Stojanovski David, Hermida Uxio, Muffoletto Marica, Lamata Pablo, Beqiri Arian, Gomez Alberto
King's College London, School of Biomedical Engineering & Imaging Sciences, London, SE1 7EU, UK.
Ultromics Ltd., Oxford, OX4 2SU, UK.
Simpl Med Ultrasound (2022). 2022;13565:86-95. doi: 10.1007/978-3-031-16902-1_9. Epub 2022 Sep 15.
Accurate geometric quantification of the human heart is a key step in the diagnosis of numerous cardiac diseases, and in the management of cardiac patients. Ultrasound imaging is the primary modality for cardiac imaging, however acquisition requires high operator skill, and its interpretation and analysis is difficult due to artifacts. Reconstructing cardiac anatomy in 3D can enable discovery of new biomarkers and make imaging less dependent on operator expertise, however most ultrasound systems only have 2D imaging capabilities. We propose both a simple alteration to the Pix2Vox++ networks for a sizeable reduction in memory usage and computational complexity, and a pipeline to perform reconstruction of 3D anatomy from 2D standard cardiac views, effectively enabling 3D anatomical reconstruction from limited 2D data. We evaluate our pipeline using synthetically generated data achieving accurate 3D whole-heart reconstructions (peak intersection over union score > 0.88) from just two standard anatomical 2D views of the heart. We also show preliminary results using real echo images.
对人类心脏进行精确的几何量化是诊断多种心脏疾病以及管理心脏病患者的关键步骤。超声成像是心脏成像的主要方式,然而采集需要高超的操作员技能,并且由于伪像其解释和分析也很困难。以三维方式重建心脏解剖结构能够发现新的生物标志物,并使成像减少对操作员专业知识的依赖,然而大多数超声系统仅具备二维成像能力。我们提出了对Pix2Vox++网络的一种简单改动,以大幅减少内存使用和计算复杂度,还提出了一个从二维标准心脏视图进行三维解剖结构重建的流程,从而有效地从有限的二维数据实现三维解剖结构重建。我们使用合成生成的数据评估我们的流程,仅从心脏的两个标准解剖二维视图就能实现精确的三维全心脏重建(交并比峰值得分>0.88)。我们还展示了使用真实回波图像的初步结果。