Zhou Wei, Tu Shaobo, Jin Junjie, Yu Cong, Wang Xinbo, Zou Chao, Guo Wenhan, Schwingenschlögl Udo, Alshareef Husam N, Chen Hu
School of Physics and Materials Science, Nanchang University, 999 Xuefu Road, Honggutan District, Nanchang, Jiangxi 330031, China.
Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Great Bay Institute for Advanced Study, Dongguan 523000, China.
ACS Appl Mater Interfaces. 2024 Oct 30;16(43):58711-58719. doi: 10.1021/acsami.4c13169. Epub 2024 Oct 15.
Given the high abundance of aluminum in the Earth's crust, the development of aluminum-ion batteries can provide a cost-effective solution for large-scale energy storage. However, the key challenge in this field is to identify high-quality cathode materials that enable effective insertion/extraction of aluminum complex ions. In this regard, we present a strategy to prepare high-capacity, long-cycling aluminum-ion batteries aluminum-ion batteries (ALBs) cathode materials. High capacity was achieved by introducing multiple active sites into a 1,1'-bi-2-naphthol (BINOL) polymer of intrinsic microporosity cathode material to realize dual aluminum complex ion adsorption. The cathode had adjustable mesoporous structure that enabled its activation, wherein the pore size gradually increased during the insertion/extraction of aluminum complex ions, effectively enhancing battery capacity and cycling stability. The aluminum-ion battery cathode material achieved a high capacity of up to 110 mAh/g at a current density of 200 mA/g and could withstand over 3000 cycles at a high current density of 1 A/g. These findings provide a design approach for aluminum-battery cathode materials intended for low-cost, large-scale energy storage.
鉴于地壳中铝的含量很高,铝离子电池的开发可为大规模储能提供一种经济高效的解决方案。然而,该领域的关键挑战是确定能够实现铝络合离子有效嵌入/脱出的高质量阴极材料。在这方面,我们提出了一种制备高容量、长循环铝离子电池阴极材料的策略。通过将多个活性位点引入到具有固有微孔性的1,1'-联-2-萘酚(BINOL)聚合物阴极材料中,实现双铝络合离子吸附,从而获得高容量。阴极具有可调节的介孔结构,使其能够被激活,其中在铝络合离子的嵌入/脱出过程中孔径逐渐增大,有效提高了电池容量和循环稳定性。该铝离子电池阴极材料在200 mA/g的电流密度下实现了高达110 mAh/g的高容量,并且在1 A/g的高电流密度下能够经受超过3000次循环。这些发现为用于低成本、大规模储能的铝电池阴极材料提供了一种设计方法。