Suppr超能文献

膜电极界面处的铜铁协同作用引发了用于选择性氧到过氧化氢电还原的串联2e+2e机制。

CuFe Cooperativity at the Membrane-Electrode Interface Elicits a Tandem 2e+2e Mechanism for Exclusive O-To-HO Electroreduction.

作者信息

Zeng Tian, Chen Jiu, Yu Zuo Hang, Tse Edmund C M

机构信息

Department of Chemistry, HKU-CAS Joint Laboratory on New Materials, University of Hong Kong, Hong Kong SAR, Hong Kong.

出版信息

J Am Chem Soc. 2024 Nov 20;146(46):31757-31767. doi: 10.1021/jacs.4c10625. Epub 2024 Oct 15.

Abstract

High O reduction reaction (ORR) kinetics and exclusive 4e pathway selectivity are keys to realizing a sustainable society. However, nonprecious electrocatalysts at present cannot enhance the ORR turnover frequency and HO Faradaic efficiency (FE) concurrently. To address these two challenges, hybrid bilayer membrane (HBM) electrodes with earth-abundant metal centers are developed to control proton-coupled electron transfer (PCET) in ORR. Here, an oxidase-inspired CuFe active site is supported on a tris(2-pyridylmethyl)amine HBM and explored as a unique interface for efficient ORR. This bimetallic HBM displayed an ORR activity 1.4 times higher than the monometallic systems and exhibited the highest FE for HO (∼94%) among Cu-, Fe-, Ni-, and Co-based HBMs. Contrary to previous studies where the ORR current decreases upon embedding the metal center in a hydrophobic lipid environment, here, the incorporation of a nitrile-terminated proton carrier at the HBM interface boosts the ORR current by 1.7 folds relative to the case where the catalytic site is directly exposed to protons in solution. This intriguing dual improvement is supported by density function theory calculations where an additional 2e+2e mechanism occurs in parallel to the direct 4e pathway, highlighting the synergistic effect of the CuFe HBM for facilitating high-performance ORR. A Zn-air battery is constructed using this CuFe HBM for the first time, further demonstrating that the knowledge gained from this HBM technology holds practical values in real-life applications. These findings on interfacial PCET are envisioned to spark new design principles for future catalysts with optimal electrochemical properties for advanced energy conversion schemes.

摘要

高氧还原反应(ORR)动力学和独特的4e路径选择性是实现可持续社会的关键。然而,目前的非贵金属电催化剂无法同时提高ORR周转频率和HO法拉第效率(FE)。为应对这两个挑战,开发了具有大量地球丰富金属中心的混合双层膜(HBM)电极,以控制ORR中的质子耦合电子转移(PCET)。在此,一种受氧化酶启发的CuFe活性位点负载在三(2-吡啶甲基)胺HBM上,并被探索为高效ORR的独特界面。这种双金属HBM的ORR活性比单金属体系高1.4倍,并且在基于Cu、Fe、Ni和Co的HBM中表现出最高的HO FE(约94%)。与之前在疏水脂质环境中嵌入金属中心时ORR电流降低的研究相反,在此,在HBM界面引入腈基封端的质子载体相对于催化位点直接暴露于溶液中的质子的情况,使ORR电流提高了1.7倍。密度泛函理论计算支持了这种有趣的双重改进,其中除了直接的4e路径外,还并行发生了额外的2e+2e机制,突出了CuFe HBM对促进高性能ORR的协同作用。首次使用这种CuFe HBM构建了锌空气电池,进一步证明了从这种HBM技术中获得的知识在实际应用中具有实用价值。这些关于界面PCET的发现有望为未来具有最佳电化学性能的先进能量转换方案的催化剂引发新的设计原则。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3699/11583977/5da344e7310a/ja4c10625_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验