Suppr超能文献

新型氢噬菌属 SNF1 菌株通过邻位环羟化途径实现磺胺甲恶唑的高效生物转化和解毒。

Efficient sulfamethoxazole biotransformation and detoxification by newly isolated strain Hydrogenophaga sp. SNF1 via a ring ortho-hydroxylation pathway.

机构信息

Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, PR China.

Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 1799 Jimei Road, Xiamen 361021, PR China; College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, PR China.

出版信息

J Hazard Mater. 2024 Dec 5;480:136113. doi: 10.1016/j.jhazmat.2024.136113. Epub 2024 Oct 9.

Abstract

Sulfonamides are frequently detected with high concentrations in various environments and was regarded as a serious environmental risk by fostering the dissemination of antibiotic resistance genes. This study for the first time reported a strain SNF1 affiliated with Hydrogenophaga can efficiently degrade sulfamethoxazole (SMX). Strain SNF1 prefers growing under extra carbon sources and neutral condition, and could degrade 500 mg/L SMX completely within 16 h. Under the conditions optimized by response surface method (3.11 g/L NaAc, 0.77 g/L (NH)SO, pH = 7.53, and T = 34.38 ℃), a high removal rate constant 0.5104 /h for 50 mg/L SMX was achieved. Coupling the intermediate products identification with comparative genomic analysis, a novel SMX degradation pathway was proposed. Unlike Actinomycetota degraders, SMX was deaminized and ring ortho-hydroxylated in strain SNF1 using a Rieske dioxygenase in combination with glutamine synthetase system. Rieske dioxygenase gene expression was up-regulated by 1.09 to 6.02-fold in response to 100 mg/L SMX. When SMX is fully degraded, its antimicrobial activity drops by over 90 %, and its anticipated toxicity to aquatic organisms were overall reduced. These findings provided new insights into SMX-degrading microorganisms and mechanisms and highlighted the potential of Hydrogenophaga. sp. SNF1 for biological elimination of SMX from wastewater.

摘要

磺胺类药物在各种环境中经常被检测到高浓度,并且被认为是通过促进抗生素耐药基因的传播而产生的严重环境风险。本研究首次报道了一株属于 Hydrogenophaga 的 SNF1 菌株,该菌株能够有效地降解磺胺甲恶唑(SMX)。SNF1 菌株更喜欢在额外的碳源和中性条件下生长,可以在 16 小时内完全降解 500mg/L 的 SMX。在响应面法优化的条件下(3.11g/L NaAc、0.77g/L (NH)SO、pH=7.53 和 T=34.38℃),对 50mg/L SMX 的高去除率常数为 0.5104/h。通过与比较基因组分析相结合,鉴定出了中间产物,提出了一种新的 SMX 降解途径。与放线菌降解菌不同,SNF1 菌株使用 Rieske 双加氧酶与谷氨酰胺合成酶系统对磺胺甲恶唑进行脱氨和环邻位羟化。Rieske 双加氧酶基因表达在 100mg/L SMX 作用下上调 1.09 至 6.02 倍。当 SMX 完全降解时,其抗菌活性下降超过 90%,对水生生物的预期毒性总体降低。这些发现为 SMX 降解微生物和机制提供了新的见解,并强调了 Hydrogenophaga。sp。SNF1 对废水中 SMX 进行生物去除的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验