Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China.
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
J Hazard Mater. 2024 Dec 5;480:136152. doi: 10.1016/j.jhazmat.2024.136152. Epub 2024 Oct 12.
The xenobiotic metabolism driven by the gut microbiota significantly regulates the bioavailability and toxic effects of environmental pollutants such as plasticizers on aquatic organisms. However, it is still unknown whether the gut microbiota can exhibit variable metabolic ability across host species and which functional bacteria and genes are involved in xenobiotic transformation. This study investigated the enriched gut microbiota community composition and diversity of in vitro enrichment cultures from 6 marine species, namely, yellowfin seabream (Acanthopagrus latus), thorn fish (Terapon jarbua), shortnose ponyfish (Leiognathus brevirostris), mussel (Perna viridis), prawn (Parapenaeopsis hungerfordi) and crab (Charybdis riversandersoni). Pseudomonadota, Bacteroidota and Bacillota were the dominant phyla and Enterobacter, Raoultella, Klebsiella, Dysgonomanas and Lactococcus were the dominant genera in the enriched flora according to 16S rRNA sequencing. Furthermore, the metagenomic results revealed that all enriched gut microbiota presented metabolic genes for carbohydrates, amino acids, lipids, and xenobiotics. In particular, the gut microbiota of yellowfin seabream had the highest abundance of glycoside hydrolase family genes and CYP450 enzyme genes. Klebsiella was identified as a common potential degrader of xenobiotic metabolism. In addition, the Biolog plate test system confirmed that the gut microbiota can metabolize various carbon sources and drive the xenobiotic transformation. According to AWCD analysis of community level physiological profiling (CLPP), yellowfin seabream > mussel > prawn > shortnose ponyfish > crab > thorn fish. The gut microbiota of yellowfin seabream presented a stronger metabolic profile of phthalates and bisphenol analogs which reflected by their AWCD results and concentration variations. Overall, our results demonstrated the diverse metabolic abilities of the gut microbiota from six marine organisms and their potential for altering of the fate of xenobiotics in the ecosystem on the basis of combined taxonomic, metagenomic, and in vitro transformation analysis.
肠道微生物群驱动的异生物质代谢显著调节了环境污染物(如增塑剂)在水生生物中的生物利用度和毒性效应。然而,目前尚不清楚肠道微生物群是否能够在宿主物种之间表现出不同的代谢能力,以及哪些功能细菌和基因参与异生物质转化。本研究调查了 6 种海洋物种(黄鳍鲷、棘鱼、短吻鼻鲈、贻贝、对虾和河蟹)体外富集培养物中富集的肠道微生物群落组成和多样性。根据 16S rRNA 测序,优势门为 Pseudomonadota、Bacteroidota 和 Bacillota,优势属为 Enterobacter、Raoultella、Klebsiella、Dysgonomanas 和 Lactococcus。此外,宏基因组学结果表明,所有富集的肠道微生物群都表现出代谢碳水化合物、氨基酸、脂质和异生物质的基因。特别是,黄鳍鲷的肠道微生物群具有最高丰度的糖苷水解酶家族基因和 CYP450 酶基因。Klebsiella 被鉴定为一种常见的异生物质代谢潜在降解菌。此外,Biolog 板测试系统证实,肠道微生物群可以代谢各种碳源并驱动异生物质转化。根据群落水平生理图谱(CLPP)的 AWCD 分析,黄鳍鲷>贻贝>对虾>短吻鼻鲈>河蟹>棘鱼。黄鳍鲷肠道微生物群对邻苯二甲酸酯和双酚类类似物表现出更强的代谢能力,这反映在其 AWCD 结果和浓度变化上。总的来说,我们的研究结果表明,六种海洋生物的肠道微生物群具有不同的代谢能力,并且能够根据分类学、宏基因组学和体外转化分析,改变异生物质在生态系统中的命运。