Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea; Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, South Korea.
Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, South Korea.
Drug Resist Updat. 2024 Nov;77:101159. doi: 10.1016/j.drup.2024.101159. Epub 2024 Oct 10.
Although immune checkpoint inhibitors (ICIs) have revolutionized immuno-oncology with effective clinical responses, only 30 to 40 % of patients respond to ICIs, highlighting the need for reliable biomarkers to predict and enhance therapeutic outcomes. This study investigated how amino acid, glycolysis, and bile acid metabolism affect ICI efficacy in non-small cell lung cancer (NSCLC) patients. Through targeted metabolomic profiling and machine learning analysis, we identified amino acid metabolism as a key factor, with histidine (His) linked to favorable outcomes and homocysteine (HCys), phenylalanine (Phe), and sarcosine (Sar) linked to poor outcomes. Importantly, the His/HCys+Phe+Sar ratio emerges as a robust biomarker. Furthermore, we emphasize the role of glycolysis-related metabolites, particularly lactate. Elevated lactate levels post-immunotherapy treatment correlate with poorer outcomes, underscoring lactate as a potential indicator of treatment efficacy. Moreover, specific bile acids, glycochenodeoxycholic acid (GCDCA) and taurolithocholic acid (TLCA), are associated with better survival and therapeutic response. Particularly, TLCA enhances T cell activation and anti-tumor immunity, suggesting its utility as a predictive biomarker and therapeutic agent. We also suggest a connection between gut microbiota and TLCA levels, with the Eubacterium genus modulating this relationship. Therefore, modulating specific metabolic pathways-particularly amino acid, glycolysis, and bile acid metabolism-could predict and enhance the efficacy of ICI therapy in NSCLC patients, with potential implications for personalized treatment strategies in immuno-oncology. ONE SENTENCE SUMMARY: Our study identifies metabolic biomarkers and pathways that could predict and enhance the outcomes of immune checkpoint inhibitor therapy in NSCLC patients.
尽管免疫检查点抑制剂(ICIs)在肿瘤免疫治疗领域取得了革命性的进展,有效率高达 30%到 40%,但仅有 30%到 40%的患者对 ICI 治疗有反应,这凸显了寻找可靠的生物标志物来预测和提高治疗效果的必要性。本研究探讨了氨基酸、糖酵解和胆汁酸代谢如何影响非小细胞肺癌(NSCLC)患者的免疫检查点抑制剂疗效。通过靶向代谢组学分析和机器学习分析,我们确定了氨基酸代谢是一个关键因素,其中组氨酸(His)与良好的治疗效果相关,同型半胱氨酸(HCys)、苯丙氨酸(Phe)和肌氨酸(Sar)与不良的治疗效果相关。重要的是,His/HCys+Phe+Sar 比值可以作为一个稳健的生物标志物。此外,我们强调了糖酵解相关代谢物,特别是乳酸的作用。免疫治疗后乳酸水平升高与较差的治疗效果相关,表明乳酸可能是治疗效果的潜在标志物。此外,特定的胆汁酸,甘氨脱氧胆酸(GCDCA)和牛磺胆酸(TLCA)与更好的生存和治疗反应相关。特别是 TLCA 增强了 T 细胞的激活和抗肿瘤免疫,提示其作为预测生物标志物和治疗剂的潜力。我们还提出了肠道微生物群与 TLCA 水平之间的联系,其中真细菌属调节这种关系。因此,调节特定的代谢途径——特别是氨基酸、糖酵解和胆汁酸代谢——可能预测和提高 NSCLC 患者免疫检查点抑制剂治疗的疗效,这对肿瘤免疫治疗中的个性化治疗策略具有潜在意义。