Department of Anesthesiology and Critical Care Medicine, Johannes Kepler University Linz and Kepler University Hospital, Linz, Austria.
Research Unit Medical Informatics, RISC Software GmbH, Hagenberg i. M., Austria.
J Clin Anesth. 2024 Dec;99:111654. doi: 10.1016/j.jclinane.2024.111654. Epub 2024 Oct 14.
Intensive care units (ICUs) harbor the sickest patients with the utmost needs of medical care. Discharge from ICU needs to consider the reason for admission and stability after ICU care. Organ dysfunction or instability after ICU discharge constitute potentially life-threatening situations for patients.
This is a single center, observational, retrospective cohort study conducted at ICUs at the Kepler University Hospital in Linz, Austria. Patients aged 18 years and above admitted to the study center's ICUs between 2010-01-01 and 2019-10-31 were included in the study. Patients transferred to another ICU, discharged to a different hospital or home, or that died during their ICU stay were excluded. We used machine learning (ML) models to predict unplanned ICU readmission or death using an internal dataset or MIMIC-IV as training data and compared the models with the Stability and Workload Index for Transfer (SWIFT) score. Further, we evaluated the influence of features on the models using Shapley Additive Explanations.
The best ML models achieved an area under the curve of the receiver operating characteristic (AUC-ROC) of 0.721 ± 0.029 and a high negative predictive value (NPV) of 0.990 ± 0.002. The most important features were heart rate, peripheral oxygen saturation and arterial blood pressure. Performance of the SWIFT score was worse than the ML models (best AUC-ROC 0.618 ± 0.011).
ML models were able to identify patients that will not need unplanned ICU readmission and will not die within 48 h after discharge.
重症监护病房(ICU)收治的是病情最严重、医疗需求最大的患者。从 ICU 出院需要考虑住院原因和 ICU 治疗后的稳定性。从 ICU 出院后器官功能障碍或不稳定构成了患者潜在的危及生命的情况。
这是一项在奥地利林茨的开普勒大学医院 ICU 进行的单中心、观察性、回顾性队列研究。纳入 2010 年 1 月 1 日至 2019 年 10 月 31 日期间入住研究中心 ICU 的年龄在 18 岁及以上的患者。排除转至另一家 ICU、转至其他医院或出院回家、或在 ICU 期间死亡的患者。我们使用机器学习(ML)模型,使用内部数据集或 MIMIC-IV 作为训练数据,来预测计划外 ICU 再入院或死亡,并与稳定性和工作量转移评分(SWIFT)进行比较。此外,我们使用 Shapley 加法解释来评估特征对模型的影响。
最佳 ML 模型的受试者工作特征曲线下面积(AUC-ROC)为 0.721±0.029,高阴性预测值(NPV)为 0.990±0.002。最重要的特征是心率、外周血氧饱和度和动脉血压。SWIFT 评分的性能劣于 ML 模型(最佳 AUC-ROC 为 0.618±0.011)。
ML 模型能够识别出不需要计划外 ICU 再入院且在出院后 48 小时内不会死亡的患者。