Esumi Ryo, Funao Hiroki, Kawamoto Eiji, Sakamoto Ryota, Ito-Masui Asami, Okuno Fumito, Shinkai Toru, Hane Atsuya, Ikejiri Kaoru, Akama Yuichi, Gaowa Arong, Park Eun Jeong, Momosaki Ryo, Kaku Ryuji, Shimaoka Motomu
Department of Molecular Pathobiology and Cell Adhesion Biology, Mie University Graduate School of Medicine, Mie University, Tsu, Japan.
Department of Practical Nursing, Mie University Graduate School of Medicine, Tsu city, Japan.
JMIR Form Res. 2025 Mar 5;9:e65190. doi: 10.2196/65190.
The incidence of delirium in patients with burns receiving treatment in the intensive care unit (ICU) is high, reaching up to 77%, and has been associated with increased mortality rates. Therefore, early identification of patients at high risk of delirium onset is essential for improving treatment strategies.
This study aimed to create a machine learning model for predicting delirium in patients with burns during their ICU stay using patient data from the first day of ICU admission and identify predictive factors for ICU delirium in patients with burns.
This study focused on 82 patients with burns aged ≥18 years who were admitted to the ICU at Mie University Hospital for ≥24 hours between January 2015 and June 2023. In total, 70 variables were measured in patients upon ICU admission and used as explanatory variables in the ICU delirium prediction model. Delirium was assessed using the Intensive Care Delirium Screening Checklist every 8 hours after ICU admission. A total of 10 different machine learning methods were used to predict ICU delirium. Multiple receiver operating characteristic curves were plotted for various machine learning models, and the area under the curve (AUC) for each was compared. In addition, the top 15 risk factors contributing to delirium onset were identified using Shapley additive explanations analysis.
Among the 10 machine learning models tested, logistic regression (mean AUC 0.906, SD 0.073), support vector machine (mean AUC 0.897, SD 0.056), k-nearest neighbor (mean AUC 0.894, SD 0.060), neural network (mean AUC 0.857, SD 0.058), random forest (mean AUC 0.850, SD 0.074), adaptive boosting (mean AUC 0.832, SD 0.094), gradient boosting machine (mean AUC 0.821, SD 0.074), and naïve Bayes (mean AUC 0.827, SD 0.095) demonstrated the highest accuracy in predicting ICU delirium. Specifically, 24-hour urine output (from ICU admission to 24 hours), oxygen saturation, burn area, total bilirubin level, and intubation upon ICU admission were identified as the major risk factors for delirium onset. In addition, variables, such as the proportion of white blood cell fractions, including monocytes; methemoglobin concentration; and respiratory rate, were identified as important risk factors for ICU delirium.
This study demonstrated the ability of machine learning models trained using vital signs and blood data upon ICU admission to predict delirium in patients with burns during their ICU stay.
在重症监护病房(ICU)接受治疗的烧伤患者中,谵妄的发生率很高,可达77%,且与死亡率增加有关。因此,早期识别有谵妄发作高风险的患者对于改善治疗策略至关重要。
本研究旨在利用ICU入院第一天的患者数据创建一个机器学习模型,以预测烧伤患者在ICU住院期间的谵妄,并识别烧伤患者ICU谵妄的预测因素。
本研究聚焦于2015年1月至2023年6月期间在三重大学医院ICU住院≥24小时的82例年龄≥18岁的烧伤患者。在患者ICU入院时共测量了70个变量,并将其用作ICU谵妄预测模型的解释变量。在ICU入院后每8小时使用重症监护谵妄筛查清单评估谵妄情况。共使用10种不同的机器学习方法来预测ICU谵妄。为各种机器学习模型绘制多个受试者工作特征曲线,并比较每个曲线下的面积(AUC)。此外,使用Shapley加性解释分析确定导致谵妄发作的前15个风险因素。
在测试的10种机器学习模型中,逻辑回归(平均AUC 0.906,标准差0.073)、支持向量机(平均AUC 0.897,标准差0.056)、k近邻(平均AUC 0.894,标准差0.060)、神经网络(平均AUC 0.857,标准差0.058)、随机森林(平均AUC 0.850,标准差0.074)、自适应增强(平均AUC 0.832,标准差0.094)、梯度提升机(平均AUC 0.821,标准差0.074)和朴素贝叶斯(平均AUC 0.827,标准差0.095)在预测ICU谵妄方面表现出最高的准确性。具体而言,24小时尿量(从ICU入院到24小时)、血氧饱和度、烧伤面积、总胆红素水平和ICU入院时的插管情况被确定为谵妄发作的主要风险因素。此外,包括单核细胞在内的白细胞分类比例、高铁血红蛋白浓度和呼吸频率等变量被确定为ICU谵妄的重要风险因素。
本研究证明了使用ICU入院时的生命体征和血液数据训练的机器学习模型能够预测烧伤患者在ICU住院期间的谵妄。