Suppr超能文献

PWAS 枢纽,用于探索常见复杂疾病的基于基因的关联。

PWAS Hub for exploring gene-based associations of common complex diseases.

机构信息

The Jerusalem Center for Personalized Computational Medicine, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.

The Rachel and Selim Benin School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem 91904, Israel.

出版信息

Genome Res. 2024 Oct 29;34(10):1674-1686. doi: 10.1101/gr.278916.123.

Abstract

PWAS (proteome-wide association study) is an innovative genetic association approach that complements widely used methods like GWAS (genome-wide association study). The PWAS approach involves consecutive phases. Initially, machine learning modeling and probabilistic considerations quantify the impact of genetic variants on protein-coding genes' biochemical functions. Secondly, for each individual, aggregating the variants per gene determines a gene-damaging score. Finally, standard statistical tests are activated in the case-control setting to yield statistically significant genes per phenotype. The PWAS Hub offers a user-friendly interface for an in-depth exploration of gene-disease associations from the UK Biobank (UKB). Results from PWAS cover 99 common diseases and conditions, each with over 10,000 diagnosed individuals per phenotype. Users can explore genes associated with these diseases, with separate analyses conducted for males and females. For each phenotype, the analyses account for sex-based genetic effects, inheritance modes (dominant and recessive), and the pleiotropic nature of associated genes. The PWAS Hub showcases its usefulness for asthma by navigating through proteomic-genetic analyses. Inspecting PWAS asthma-listed genes (a total of 27) provide insights into the underlying cellular and molecular mechanisms. Comparison of PWAS-statistically significant genes for common diseases to the Open Targets benchmark shows partial but significant overlap in gene associations for most phenotypes. Graphical tools facilitate comparing genetic effects between PWAS and coding GWAS results, aiding in understanding the sex-specific genetic impact on common diseases. This adaptable platform is attractive to clinicians, researchers, and individuals interested in delving into gene-disease associations and sex-specific genetic effects.

摘要

PWAS(蛋白质组范围关联研究)是一种创新的遗传关联方法,补充了广泛使用的方法,如 GWAS(全基因组关联研究)。PWAS 方法包括连续的阶段。首先,机器学习建模和概率考虑量化了遗传变异对蛋白质编码基因生化功能的影响。其次,对于每个个体,根据基因汇总变异来确定基因损伤评分。最后,在病例对照设置中激活标准统计检验,以针对每个表型产生具有统计学意义的基因。PWAS Hub 为深入探索 UKB(英国生物库)中的基因-疾病关联提供了一个用户友好的界面。PWAS 的结果涵盖了 99 种常见疾病和病症,每种疾病和病症都有超过 10,000 名确诊个体。用户可以探索与这些疾病相关的基因,并分别对男性和女性进行分析。对于每个表型,分析考虑了基于性别的遗传效应、遗传模式(显性和隐性)以及相关基因的多效性。PWAS Hub 通过导航蛋白质组学-遗传分析展示了其在哮喘中的有用性。检查 PWAS 哮喘列出的基因(总共 27 个)提供了对潜在细胞和分子机制的深入了解。将 PWAS 统计显著的常见疾病基因与 Open Targets 基准进行比较,表明大多数表型的基因关联存在部分但显著的重叠。图形工具有助于比较 PWAS 和编码 GWAS 结果之间的遗传效应,有助于理解常见疾病中性别特异性遗传对的影响。这个适应性强的平台对临床医生、研究人员和对深入研究基因-疾病关联和性别特异性遗传效应感兴趣的个人具有吸引力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4892/11529988/bf50a00051d9/1674f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验