Ahrens Esben, Jennum Poul, Duun-Henriksen Jonas, Djurhuus Bjarki, Homøe Preben, Kjær Troels W, Hemmsen Martin Christian
Data Science, T&W Engineering A/S, Lillerød, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark.
Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.
Sleep Health. 2024 Dec;10(6):612-620. doi: 10.1016/j.sleh.2024.08.007. Epub 2024 Oct 15.
Performance evaluation of automatic sleep staging on two-channel subcutaneous electroencephalography.
UNEEG medical's 24/7 electroencephalography SubQ (the SubQ device) with deep learning model U-SleepSQ.
REFERENCE METHOD/TECHNOLOGY: Manually scored hypnograms from polysomnographic recordings.
Twenty-two healthy adults with 1-6 recordings per participant. The clinical study was registered at ClinicalTrials.gov with the identifier NCT04513743.
Fine-tuning of U-Sleep in 11-fold cross-participant validation on 22 healthy adults. The resultant model was called U-SleepSQ.
Bland-Altman analysis of sleep parameters. Advanced multiclass model performance metrics: stage-specific accuracy, specificity, sensitivity, kappa (κ), and F1 score. Additionally, Cohen's κ coefficient and macro F1 score. Longitudinal and participant-level performance evaluation.
Exploration of model confidence quantification. Performance vs. age, sex, body mass index, SubQ implantation hemisphere, normalized entropy, transition index, and scores from the following three questionnaires: Morningness-Eveningness Questionnaire, World Health Organization's 5-item Well-being Index, and Major Depression Inventory.
There was a strong agreement between the focus and reference method/technology.
The confidence score was a promising metric for estimating the reliability of each hypnogram classified by the system.
The U-SleepSQ model classified hypnograms for healthy participants soon after implantation and longitudinally with a strong agreement with the gold standard of manually scored polysomnographics, exhibiting negligible temporal variation.
对双通道皮下脑电图自动睡眠分期进行性能评估。
UNEEG medical公司的24/7脑电图皮下监测仪(SubQ设备)及深度学习模型U-SleepSQ。
参考方法/技术:多导睡眠图记录的人工评分睡眠图。
22名健康成年人,每位参与者有1至6次记录。该临床研究已在ClinicalTrials.gov注册,标识符为NCT04513743。
在22名健康成年人中进行11折交叉参与者验证,对U-Sleep进行微调。所得模型称为U-SleepSQ。
睡眠参数的布兰德-奥特曼分析。高级多类模型性能指标:特定阶段的准确性、特异性、敏感性、kappa(κ)系数和F1分数。此外,还有科恩κ系数和宏观F1分数。纵向和参与者层面的性能评估。
模型置信度量化的探索。性能与年龄、性别、体重指数、SubQ植入半球、归一化熵、转换指数以及以下三份问卷得分的关系:晨型-夜型问卷、世界卫生组织5项幸福感指数和重度抑郁量表。
重点方法与参考方法/技术之间存在高度一致性。
置信分数是估计系统分类的每个睡眠图可靠性的一个有前景的指标。
U-SleepSQ模型在植入后不久即可对健康参与者的睡眠图进行分类,并且在纵向层面上与人工评分多导睡眠图的金标准高度一致,时间变化可忽略不计。