Suppr超能文献

基于24/7皮下脑电图(UNEEG医疗设备)数据的自动睡眠分期在健康成年人中与多导睡眠图显示出高度一致性。

Automatic sleep staging based on 24/7 EEG SubQ (UNEEG medical) data displays strong agreement with polysomnography in healthy adults.

作者信息

Ahrens Esben, Jennum Poul, Duun-Henriksen Jonas, Djurhuus Bjarki, Homøe Preben, Kjær Troels W, Hemmsen Martin Christian

机构信息

Data Science, T&W Engineering A/S, Lillerød, Denmark; Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark.

Department of Clinical Medicine, University of Copenhagen, Copenhagen N, Denmark; Danish Center for Sleep Medicine, Department of Clinical Neurophysiology, Rigshospitalet, Glostrup, Denmark.

出版信息

Sleep Health. 2024 Dec;10(6):612-620. doi: 10.1016/j.sleh.2024.08.007. Epub 2024 Oct 15.

Abstract

GOAL AND AIMS

Performance evaluation of automatic sleep staging on two-channel subcutaneous electroencephalography.

FOCUS TECHNOLOGY

UNEEG medical's 24/7 electroencephalography SubQ (the SubQ device) with deep learning model U-SleepSQ.

REFERENCE METHOD/TECHNOLOGY: Manually scored hypnograms from polysomnographic recordings.

SAMPLE

Twenty-two healthy adults with 1-6 recordings per participant. The clinical study was registered at ClinicalTrials.gov with the identifier NCT04513743.

DESIGN

Fine-tuning of U-Sleep in 11-fold cross-participant validation on 22 healthy adults. The resultant model was called U-SleepSQ.

CORE ANALYTICS

Bland-Altman analysis of sleep parameters. Advanced multiclass model performance metrics: stage-specific accuracy, specificity, sensitivity, kappa (κ), and F1 score. Additionally, Cohen's κ coefficient and macro F1 score. Longitudinal and participant-level performance evaluation.

ADDITIONAL ANALYTICS AND EXPLORATORY ANALYSES

Exploration of model confidence quantification. Performance vs. age, sex, body mass index, SubQ implantation hemisphere, normalized entropy, transition index, and scores from the following three questionnaires: Morningness-Eveningness Questionnaire, World Health Organization's 5-item Well-being Index, and Major Depression Inventory.

CORE OUTCOMES

There was a strong agreement between the focus and reference method/technology.

IMPORTANT SUPPLEMENTAL OUTCOMES

The confidence score was a promising metric for estimating the reliability of each hypnogram classified by the system.

CORE CONCLUSION

The U-SleepSQ model classified hypnograms for healthy participants soon after implantation and longitudinally with a strong agreement with the gold standard of manually scored polysomnographics, exhibiting negligible temporal variation.

摘要

目标与目的

对双通道皮下脑电图自动睡眠分期进行性能评估。

重点技术

UNEEG medical公司的24/7脑电图皮下监测仪(SubQ设备)及深度学习模型U-SleepSQ。

参考方法/技术:多导睡眠图记录的人工评分睡眠图。

样本

22名健康成年人,每位参与者有1至6次记录。该临床研究已在ClinicalTrials.gov注册,标识符为NCT04513743。

设计

在22名健康成年人中进行11折交叉参与者验证,对U-Sleep进行微调。所得模型称为U-SleepSQ。

核心分析

睡眠参数的布兰德-奥特曼分析。高级多类模型性能指标:特定阶段的准确性、特异性、敏感性、kappa(κ)系数和F1分数。此外,还有科恩κ系数和宏观F1分数。纵向和参与者层面的性能评估。

额外分析与探索性分析

模型置信度量化的探索。性能与年龄、性别、体重指数、SubQ植入半球、归一化熵、转换指数以及以下三份问卷得分的关系:晨型-夜型问卷、世界卫生组织5项幸福感指数和重度抑郁量表。

核心结果

重点方法与参考方法/技术之间存在高度一致性。

重要补充结果

置信分数是估计系统分类的每个睡眠图可靠性的一个有前景的指标。

核心结论

U-SleepSQ模型在植入后不久即可对健康参与者的睡眠图进行分类,并且在纵向层面上与人工评分多导睡眠图的金标准高度一致,时间变化可忽略不计。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验