van der Aar Jaap F, van Gilst Merel M, van den Ende Daan A, Fonseca Pedro, van Wetten Bregje N J, Janssen Hennie C J P, Peri Elisabetta, Overeem Sebastiaan
Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Philips Sleep and Respiratory Care, Philips, Eindhoven, The Netherlands.
J Clin Sleep Med. 2025 Feb 1;21(2):315-323. doi: 10.5664/jcsm.11380.
Although various wearable electroencephalography devices have been developed, performance evaluation of the devices and their associated automated sleep stage classification models is mostly limited to healthy participants. A major barrier for applying automated wearable electroencephalography sleep staging in clinical populations is the need for large-scale data for model training. We therefore investigated transfer learning as a strategy to overcome limited data availability and optimize automated single-channel electroencephalography sleep staging in people with sleep disorders.
We acquired 52 single-channel frontopolar headband electroencephalography recordings from a heterogeneous sleep-disordered population with concurrent polysomnography (PSG). We compared 3 model training strategies: "pretraining" (ie, training on a larger dataset of 901 conventional PSGs), "training-from-scratch" (ie, training on wearable headband recordings), and "fine-tuning" (ie, training on conventional PSGs, followed by training on headband recordings). Performance was evaluated on all headband recordings using 10-fold cross-validation.
Highest performance for 5-stage classification was achieved with fine-tuning (κ = .778), significantly higher than with pretraining (κ = .769) and with training-from-scratch (κ = .733). No significant differences or systematic biases were observed with clinically relevant sleep parameters derived from PSG. All sleep disorder categories showed comparable performance.
This study emphasizes the importance of leveraging larger available datasets through deep transfer learning to optimize performance with limited data availability. Findings indicate strong similarity in data characteristics between conventional PSG and headband recordings. Altogether, results suggest the combination of the headband, classification model, and training methodology can be viable for sleep monitoring in the heterogeneous clinical population.
van der Aar JF, van Gilst MM, van den Ende DA, et al. Optimizing wearable single-channel electroencephalography sleep staging in a heterogeneous sleep-disordered population using transfer learning. 2025;21(2):315-323.
尽管已经开发出了各种可穿戴式脑电图设备,但对这些设备及其相关的自动睡眠阶段分类模型的性能评估大多局限于健康参与者。在临床人群中应用自动可穿戴式脑电图睡眠分期的一个主要障碍是模型训练需要大规模数据。因此,我们研究了迁移学习作为一种策略,以克服数据可用性有限的问题,并优化睡眠障碍患者的自动单通道脑电图睡眠分期。
我们从异质性睡眠障碍人群中获取了52份单通道额极头带脑电图记录,并同时进行了多导睡眠图(PSG)检查。我们比较了3种模型训练策略:“预训练”(即在901份传统PSG的更大数据集上进行训练)、“从头开始训练”(即在可穿戴头带记录上进行训练)和“微调”(即在传统PSG上进行训练,然后在头带记录上进行训练)。使用10折交叉验证对所有头带记录的性能进行评估。
通过微调实现了5阶段分类的最高性能(κ = 0.778),显著高于预训练(κ = 0.769)和从头开始训练(κ = 0.733)。从PSG得出的临床相关睡眠参数未观察到显著差异或系统偏差。所有睡眠障碍类别均表现出可比的性能。
本研究强调了通过深度迁移学习利用更大的可用数据集来优化有限数据可用性下的性能的重要性。研究结果表明传统PSG和头带记录的数据特征具有很强的相似性。总之,结果表明头带、分类模型和训练方法的组合对于异质性临床人群的睡眠监测是可行的。
van der Aar JF, van Gilst MM, van den Ende DA,等。使用迁移学习优化异质性睡眠障碍人群的可穿戴单通道脑电图睡眠分期。2025;21(2):315 - 323。