Suppr超能文献

运用统计分析、机器学习和语义本体探索在线公共调查生活方式数据集。

Exploring online public survey lifestyle datasets with statistical analysis, machine learning and semantic ontology.

机构信息

Department of Information and Communication Technologies, University of Agder, 4879, Grimstad, Norway.

Department of Holistic Systems, Simula Metropolitan Center for Digital Engineering, 0167, Oslo, Norway.

出版信息

Sci Rep. 2024 Oct 15;14(1):24190. doi: 10.1038/s41598-024-74539-6.

Abstract

Lifestyle diseases significantly contribute to the global health burden, with lifestyle factors playing a crucial role in the development of depression. The COVID-19 pandemic has intensified many determinants of depression. This study aimed to identify lifestyle and demographic factors associated with depression symptoms among Indians during the pandemic, focusing on a sample from Kolkata, India. An online public survey was conducted, gathering data from 1,834 participants (with 1,767 retained post-cleaning) over three months via social media and email. The survey consisted of 44 questions and was distributed anonymously to ensure privacy. Data were analyzed using statistical methods and machine learning, with principal component analysis (PCA) and analysis of variance (ANOVA) employed for feature selection. K-means clustering divided the pre-processed dataset into five clusters, and a support vector machine (SVM) with a linear kernel achieved 96% accuracy in a multi-class classification problem. The Local Interpretable Model-agnostic Explanations (LIME) algorithm provided local explanations for the SVM model predictions. Additionally, an OWL (web ontology language) ontology facilitated the semantic representation and reasoning of the survey data. The study highlighted a pipeline for collecting, analyzing, and representing data from online public surveys during the pandemic. The identified factors were correlated with depressive symptoms, illustrating the significant influence of lifestyle and demographic variables on mental health. The online survey method proved advantageous for data collection, visualization, and cost-effectiveness while maintaining anonymity and reducing bias. Challenges included reaching the target population, addressing language barriers, ensuring digital literacy, and mitigating dishonest responses and sampling errors. In conclusion, lifestyle and demographic factors significantly impact depression during the COVID-19 pandemic. The study's methodology offers valuable insights into addressing mental health challenges through scalable online surveys, aiding in the understanding and mitigation of depression risk factors.

摘要

生活方式疾病对全球健康负担有重大影响,生活方式因素在抑郁症的发展中起着至关重要的作用。COVID-19 大流行加剧了许多导致抑郁症的决定因素。本研究旨在确定与大流行期间印度人抑郁症状相关的生活方式和人口统计学因素,重点关注印度加尔各答的样本。通过社交媒体和电子邮件进行了在线公众调查,在三个月内从 1834 名参与者(清洗后保留 1767 名)中收集数据。该调查包含 44 个问题,以匿名方式分发,以确保隐私。使用统计方法和机器学习分析数据,使用主成分分析(PCA)和方差分析(ANOVA)进行特征选择。K-均值聚类将预处理数据集分为五个簇,线性核支持向量机(SVM)在多类分类问题中实现了 96%的准确率。局部可解释模型不可知解释(LIME)算法为 SVM 模型预测提供了局部解释。此外,OWL(网络本体语言)本体促进了调查数据的语义表示和推理。该研究强调了在大流行期间从在线公众调查中收集、分析和表示数据的管道。确定的因素与抑郁症状相关,表明生活方式和人口统计学变量对心理健康有重大影响。在线调查方法在保持匿名性和减少偏差的同时,证明了在数据收集、可视化和成本效益方面的优势。挑战包括接触目标人群、解决语言障碍、确保数字素养以及减轻不诚实的反应和抽样误差。总之,生活方式和人口统计学因素在 COVID-19 大流行期间对抑郁有重大影响。该研究的方法为通过可扩展的在线调查解决心理健康挑战提供了有价值的见解,有助于理解和减轻抑郁风险因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d6c2/11480510/1dd213a1b2a8/41598_2024_74539_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验