Suppr超能文献

新冠疫情期间心理健康状况和经济脆弱性导致的情绪困扰:使用半监督机器学习算法对调查相关的推特数据进行的回顾性分析。

Emotional Distress During COVID-19 by Mental Health Conditions and Economic Vulnerability: Retrospective Analysis of Survey-Linked Twitter Data With a Semisupervised Machine Learning Algorithm.

机构信息

Department of Public Administration and International Affairs, The Maxwell School of Citizenship and Public Affairs, Syracuse University, Syracuse, NY, United States.

Center for Policy Research, The Maxwell School of Citizenship and Public Affairs, Syracuse University, Syracuse, NY, United States.

出版信息

J Med Internet Res. 2023 Mar 16;25:e44965. doi: 10.2196/44965.

Abstract

BACKGROUND

Monitoring the psychological conditions of social media users during rapidly developing public health crises, such as the COVID-19 pandemic, using their posts on social media has rapidly gained popularity as a relatively easy and cost-effective method. However, the characteristics of individuals who created these posts are largely unknown, making it difficult to identify groups of individuals most affected by such crises. In addition, large annotated data sets for mental health conditions are not easily available, and thus, supervised machine learning algorithms can be infeasible or too costly.

OBJECTIVE

This study proposes a machine learning framework for the real-time surveillance of mental health conditions that does not require extensive training data. Using survey-linked tweets, we tracked the level of emotional distress during the COVID-19 pandemic by the attributes and psychological conditions of social media users in Japan.

METHODS

We conducted online surveys of adults residing in Japan in May 2022 and collected their basic demographic information, socioeconomic status, and mental health conditions, along with their Twitter handles (N=2432). We computed emotional distress scores for all the tweets posted by the study participants between January 1, 2019, and May 30, 2022 (N=2,493,682) using a semisupervised algorithm called latent semantic scaling (LSS), with higher values indicating higher levels of emotional distress. After excluding users by age and other criteria, we examined 495,021 (19.85%) tweets generated by 560 (23.03%) individuals (age 18-49 years) in 2019 and 2020. We estimated fixed-effect regression models to examine their emotional distress levels in 2020 relative to the corresponding weeks in 2019 by the mental health conditions and characteristics of social media users.

RESULTS

The estimated level of emotional distress of our study participants increased in the week when school closure started (March 2020), and it peaked at the beginning of the state of emergency (estimated coefficient=0.219, 95% CI 0.162-0.276) in early April 2020. Their level of emotional distress was unrelated to the number of COVID-19 cases. We found that the government-induced restrictions disproportionately affected the psychological conditions of vulnerable individuals, including those with low income, precarious employment, depressive symptoms, and suicidal ideation.

CONCLUSIONS

This study establishes a framework to implement near-real-time monitoring of the emotional distress level of social media users, highlighting a great potential to continuously monitor their well-being using survey-linked social media posts as a complement to administrative and large-scale survey data. Given its flexibility and adaptability, the proposed framework is easily extendable for other purposes, such as detecting suicidality among social media users, and can be used on streaming data for continuous measurement of the conditions and sentiment of any group of interest.

摘要

背景

在 COVID-19 大流行等快速发展的公共卫生危机期间,监测社交媒体用户的心理状况已成为一种热门趋势,利用他们在社交媒体上发布的帖子来监测是一种相对简单且具有成本效益的方法。然而,发布这些帖子的个人特征在很大程度上是未知的,这使得我们难以确定受此类危机影响最大的人群。此外,心理健康状况的大型标注数据集不容易获得,因此,监督机器学习算法可能不可行或成本过高。

目的

本研究提出了一种不需要大量训练数据的实时监测心理健康状况的机器学习框架。我们通过调查链接的推文,根据日本社交媒体用户的特征和心理状况,追踪 COVID-19 大流行期间的情绪困扰程度。

方法

我们于 2022 年 5 月对居住在日本的成年人进行了在线调查,并收集了他们的基本人口统计学信息、社会经济地位和心理健康状况,以及他们的 Twitter 用户名(N=2432)。我们使用一种名为潜在语义标度(LSS)的半监督算法来计算所有研究参与者在 2019 年 1 月 1 日至 2022 年 5 月 30 日期间发布的推文的情绪困扰得分(N=2493682),得分越高表示情绪困扰程度越高。在排除年龄和其他标准的用户后,我们研究了 2019 年和 2020 年期间由 560 名(23.03%)年龄在 18-49 岁的个体生成的 495021 条(19.85%)推文。我们通过固定效应回归模型,根据社交媒体用户的心理健康状况和特征,估计了他们在 2020 年对应周的情绪困扰水平相对于 2019 年的变化。

结果

我们研究参与者的情绪困扰水平在学校关闭开始的那一周(2020 年 3 月)上升,并在 2020 年 4 月初(估计系数=0.219,95%CI 0.162-0.276)的紧急状态开始时达到峰值。他们的情绪困扰水平与 COVID-19 病例数量无关。我们发现,政府实施的限制措施对弱势群体的心理状况产生了不成比例的影响,包括收入低、就业不稳定、抑郁症状和自杀意念的个体。

结论

本研究建立了一个实施社交媒体用户情绪困扰水平实时监测的框架,突出了使用调查链接的社交媒体帖子来不断监测他们的幸福感的巨大潜力,这可以作为行政和大规模调查数据的补充。鉴于其灵活性和适应性,所提出的框架很容易扩展到其他目的,例如检测社交媒体用户的自杀倾向,并且可以用于流数据,以连续测量任何感兴趣群体的状况和情绪。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1694/10022650/a40f8c6396f5/jmir_v25i1e44965_fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验