Suppr超能文献

电子废弃物中稀土元素的赋存及回收研究综述

A Review of the Occurrence and Recovery of Rare Earth Elements from Electronic Waste.

作者信息

Liang Binjun, Gu Jihan, Zeng Xiangrong, Yuan Weiquan, Rao Mingjun, Xiao Bin, Hu Haixiang

机构信息

Ganzhou Key Laboratory of Mine Geological Disaster Prevention and Control and Ecological Restoration, School of Resources and Civil Engineering, Gannan University of Science and Technology, Ganzhou 341000, China.

Chongyi Green Metallurgy New Energy Co., Ltd., Ganzhou 341300, China.

出版信息

Molecules. 2024 Sep 29;29(19):4624. doi: 10.3390/molecules29194624.

Abstract

Electronic waste (e-waste) contains valuable rare earth elements (REEs) essential for various high-tech applications, making their recovery crucial for sustainable resource management. This review provides an overview of the occurrence of REEs in e-waste and discusses both conventional and emerging green technologies for their recovery. Conventional methods include physical separation, hydrometallurgy, and pyrometallurgy, while innovative approaches such as bioleaching, supercritical fluid extraction, ionic liquid extraction, and lanmodulin-derived peptides offer improved environmental sustainability and efficiency. The article presents case studies on the extraction of REEs from waste permanent magnets and fluorescent powders, highlighting the specific processes involved. Future research should focus on developing eco-friendly leaching agents, separation materials, and process optimization to enhance the overall sustainability and efficiency of REE recovery from e-waste, addressing both resource recovery and environmental concerns effectively.

摘要

电子废物(电子垃圾)含有各种高科技应用所需的宝贵稀土元素(REEs),因此回收这些元素对于可持续资源管理至关重要。本综述概述了电子废物中稀土元素的存在情况,并讨论了回收这些元素的传统和新兴绿色技术。传统方法包括物理分离、湿法冶金和火法冶金,而生物浸出、超临界流体萃取、离子液体萃取和镧调蛋白衍生肽等创新方法则提高了环境可持续性和效率。本文介绍了从废永磁体和荧光粉中提取稀土元素的案例研究,突出了其中涉及的具体过程。未来的研究应侧重于开发环保型浸出剂、分离材料和工艺优化,以提高从电子废物中回收稀土元素的整体可持续性和效率,有效解决资源回收和环境问题。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/58d4/11477848/be6e3dab773e/molecules-29-04624-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验