Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.
Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt.
Molecules. 2024 Oct 9;29(19):4784. doi: 10.3390/molecules29194784.
One of the major global health threats in the present era is antibiotic resistance. Biosynthesized iron oxide nanoparticles (FeNPs) can combat microbial infections and can be synthesized without harmful chemicals. In the present investigation, 16S rRNA gene sequencing was used to discover sp. SMGL39, an actinomycete isolate utilized to reduce ferrous sulfate heptahydrate (FeSO.7HO) to biosynthesize FeNPs, which were then characterized using UV-Vis, XRD, FTIR, and TEM analyses. Furthermore, in our current study, the biosynthesized FeNPs were tested for antimicrobial and antibiofilm characteristics against different Gram-negative, Gram-positive, and fungal strains. Additionally, our work examines the biosynthesized FeNPs' molecular docking and binding affinity to key enzymes, which contributed to bacterial infection cooperation via quorum sensing (QS) processes. A bright yellow to dark brown color shift indicated the production of FeNPs, which have polydispersed forms with particle sizes ranging from 80 to 180 nm and UV absorbance ranging from 220 to 280 nm. Biosynthesized FeNPs from actinobacteria significantly reduced the microbial growth of and , while they showed weak antimicrobial activity against and no activity against , , or . On the other hand, biosynthesized FeNPs showed strong antibiofilm activity against while showing mild and weak activity against and respectively. The collaboration of biosynthesized FeNPs and key enzymes for bacterial infection exhibits hydrophobic and/or hydrogen bonding, according to this research. These results show that actinobacteria-biosynthesized FeNPs prevent biofilm development in bacteria.
当今时代,主要的全球健康威胁之一是抗生素耐药性。生物合成氧化铁纳米粒子(FeNPs)可以对抗微生物感染,并且可以在没有有害化学物质的情况下合成。在本研究中,使用 16S rRNA 基因测序来发现放线菌属 SMGL39,这是一种分离株,用于将七水合硫酸亚铁(FeSO.7HO)还原为生物合成 FeNPs,然后使用 UV-Vis、XRD、FTIR 和 TEM 分析对其进行表征。此外,在我们目前的研究中,测试了生物合成的 FeNPs 对不同革兰氏阴性、革兰氏阳性和真菌菌株的抗菌和抗生物膜特性。此外,我们的工作还研究了生物合成的 FeNPs 通过群体感应(QS)过程与关键酶的分子对接和结合亲和力,这些酶有助于细菌感染的协同作用。黄色到深棕色的颜色变化表明 FeNPs 的产生,FeNPs 的形式为具有 80 至 180nm 粒径的多分散体,并且具有 220 至 280nm 的紫外吸收。放线菌生物合成的 FeNPs 显著降低了 和 的微生物生长,而对 和 表现出较弱的抗菌活性,对 、 、 或 则没有活性。另一方面,生物合成的 FeNPs 对 表现出强烈的抗生物膜活性,而对 和 分别表现出温和和较弱的活性。根据这项研究,生物合成的 FeNPs 与细菌感染的关键酶的协同作用表现出疏水性和/或氢键。这些结果表明,放线菌生物合成的 FeNPs 可防止细菌生物膜的形成。
Nanomedicine (Lond). 2021-4
Int J Mol Sci. 2019-7-12
Nat Biomed Eng. 2017-8
J Hazard Mater. 2018-6-4
Mol Biol Evol. 2018-6-1
Adv Healthc Mater. 2018-3