文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

海洋 sp. SMGL39 生物合成具有抗生物膜活性的氧化铁纳米颗粒:体外和计算机模拟研究。

Biosynthesis of Iron Oxide Nanoparticles by Marine sp. SMGL39 with Antibiofilm Activity: In Vitro and In Silico Study.

机构信息

Biochemistry Division, Chemistry Department, Faculty of Science, Cairo University, Giza 12613, Egypt.

Medicinal Chemistry Department, Theodor Bilharz Research Institute Kornaish El Nile, Warrak El-Hadar, Imbaba P.O. Box 30, Giza 12411, Egypt.

出版信息

Molecules. 2024 Oct 9;29(19):4784. doi: 10.3390/molecules29194784.


DOI:10.3390/molecules29194784
PMID:39407712
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11478020/
Abstract

One of the major global health threats in the present era is antibiotic resistance. Biosynthesized iron oxide nanoparticles (FeNPs) can combat microbial infections and can be synthesized without harmful chemicals. In the present investigation, 16S rRNA gene sequencing was used to discover sp. SMGL39, an actinomycete isolate utilized to reduce ferrous sulfate heptahydrate (FeSO.7HO) to biosynthesize FeNPs, which were then characterized using UV-Vis, XRD, FTIR, and TEM analyses. Furthermore, in our current study, the biosynthesized FeNPs were tested for antimicrobial and antibiofilm characteristics against different Gram-negative, Gram-positive, and fungal strains. Additionally, our work examines the biosynthesized FeNPs' molecular docking and binding affinity to key enzymes, which contributed to bacterial infection cooperation via quorum sensing (QS) processes. A bright yellow to dark brown color shift indicated the production of FeNPs, which have polydispersed forms with particle sizes ranging from 80 to 180 nm and UV absorbance ranging from 220 to 280 nm. Biosynthesized FeNPs from actinobacteria significantly reduced the microbial growth of and , while they showed weak antimicrobial activity against and no activity against , , or . On the other hand, biosynthesized FeNPs showed strong antibiofilm activity against while showing mild and weak activity against and respectively. The collaboration of biosynthesized FeNPs and key enzymes for bacterial infection exhibits hydrophobic and/or hydrogen bonding, according to this research. These results show that actinobacteria-biosynthesized FeNPs prevent biofilm development in bacteria.

摘要

当今时代,主要的全球健康威胁之一是抗生素耐药性。生物合成氧化铁纳米粒子(FeNPs)可以对抗微生物感染,并且可以在没有有害化学物质的情况下合成。在本研究中,使用 16S rRNA 基因测序来发现放线菌属 SMGL39,这是一种分离株,用于将七水合硫酸亚铁(FeSO.7HO)还原为生物合成 FeNPs,然后使用 UV-Vis、XRD、FTIR 和 TEM 分析对其进行表征。此外,在我们目前的研究中,测试了生物合成的 FeNPs 对不同革兰氏阴性、革兰氏阳性和真菌菌株的抗菌和抗生物膜特性。此外,我们的工作还研究了生物合成的 FeNPs 通过群体感应(QS)过程与关键酶的分子对接和结合亲和力,这些酶有助于细菌感染的协同作用。黄色到深棕色的颜色变化表明 FeNPs 的产生,FeNPs 的形式为具有 80 至 180nm 粒径的多分散体,并且具有 220 至 280nm 的紫外吸收。放线菌生物合成的 FeNPs 显著降低了 和 的微生物生长,而对 和 表现出较弱的抗菌活性,对 、 、 或 则没有活性。另一方面,生物合成的 FeNPs 对 表现出强烈的抗生物膜活性,而对 和 分别表现出温和和较弱的活性。根据这项研究,生物合成的 FeNPs 与细菌感染的关键酶的协同作用表现出疏水性和/或氢键。这些结果表明,放线菌生物合成的 FeNPs 可防止细菌生物膜的形成。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/4755f116fd2f/molecules-29-04784-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/de75a1498140/molecules-29-04784-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/3ead9ed2a5db/molecules-29-04784-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/dfc01a192fa8/molecules-29-04784-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/8750f3b31e49/molecules-29-04784-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/1795dba44154/molecules-29-04784-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/4394102a1c01/molecules-29-04784-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/e48ed98af9fb/molecules-29-04784-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/eb63dbb9b6ed/molecules-29-04784-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/43166487dcd0/molecules-29-04784-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/a0439682febc/molecules-29-04784-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/9a4ed49cb13b/molecules-29-04784-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/4755f116fd2f/molecules-29-04784-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/de75a1498140/molecules-29-04784-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/3ead9ed2a5db/molecules-29-04784-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/dfc01a192fa8/molecules-29-04784-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/8750f3b31e49/molecules-29-04784-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/1795dba44154/molecules-29-04784-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/4394102a1c01/molecules-29-04784-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/e48ed98af9fb/molecules-29-04784-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/eb63dbb9b6ed/molecules-29-04784-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/43166487dcd0/molecules-29-04784-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/a0439682febc/molecules-29-04784-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/9a4ed49cb13b/molecules-29-04784-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe30/11478020/4755f116fd2f/molecules-29-04784-g012.jpg

相似文献

[1]
Biosynthesis of Iron Oxide Nanoparticles by Marine sp. SMGL39 with Antibiofilm Activity: In Vitro and In Silico Study.

Molecules. 2024-10-9

[2]
Antimicrobial, Antioxidant and Larvicidal Activities of Spherical Silver Nanoparticles Synthesized by Endophytic Streptomyces spp.

Biol Trace Elem Res. 2020-6

[3]
Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities.

Sci Rep. 2021-11-11

[4]
Desertifilum sp. EAZ03 cell extract as a novel natural source for the biosynthesis of zinc oxide nanoparticles and antibacterial, anticancer and antibiofilm characteristics of synthesized zinc oxide nanoparticles.

J Appl Microbiol. 2022-1

[5]
Endophytic actinomycetes Streptomyces spp mediated biosynthesis of copper oxide nanoparticles as a promising tool for biotechnological applications.

J Biol Inorg Chem. 2019-3-26

[6]
Potential mechanism of gallic acid-coated iron oxide nanoparticles against associated genes of Klebsiella pneumoniae capsule, antibacterial and antibiofilm.

Microsc Res Tech. 2024-11

[7]
Silver nanoparticles biosynthesized from secondary metabolite producing marine actinobacteria and evaluation of their biomedical potential.

Antonie Van Leeuwenhoek. 2021-10

[8]
Biosynthesis and Characterization of -Derived Silver Nanoparticles: Antimicrobial Activity, Biofilm Inhibition, Antihemolytic Activity, and In Silico Studies.

Int J Mol Sci. 2024-7-23

[9]
Biosynthesis and characterization of zinc oxide nanoparticles from an estuarine-associated actinobacterium Streptomyces spp. and its biotherapeutic applications.

Arch Microbiol. 2021-12-13

[10]
Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon.

J Adv Res. 2024-5

本文引用的文献

[1]
Antibiofilm, antimicrobial and cytotoxic activity of extracellular green-synthesized silver nanoparticles by two marine-derived actinomycete.

RSC Adv. 2020-3-11

[2]
Biologically synthesized iron nanoparticles (FeNPs) from Phoenix dactylifera have anti-bacterial activities.

Sci Rep. 2021-11-11

[3]
Recent developments of cancer nanomedicines based on ultrasmall iron oxide nanoparticles and nanoclusters.

Nanomedicine (Lond). 2021-4

[4]
Induction of Antibacterial Metabolites by Co-Cultivation of Two Red-Sea-Sponge-Associated Actinomycetes sp. UR56 and sp. EG49.

Mar Drugs. 2020-5-5

[5]
Biofilms: The Microbial "Protective Clothing" in Extreme Environments.

Int J Mol Sci. 2019-7-12

[6]
Iron oxide nanoclusters for T magnetic resonance imaging of non-human primates.

Nat Biomed Eng. 2017-8

[7]
Enhancing Coupled Enzymatic Activity by Colocalization on Nanoparticle Surfaces: Kinetic Evidence for Directed Channeling of Intermediates.

ACS Nano. 2018-7-25

[8]
Recent advances on biosorption by aerobic granular sludge.

J Hazard Mater. 2018-6-4

[9]
MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms.

Mol Biol Evol. 2018-6-1

[10]
Advances in Magnetic Nanoparticles for Biomedical Applications.

Adv Healthc Mater. 2018-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索