Suppr超能文献

水杨酸掺杂铁纳米生物刺激素增强了西瓜的防御反应,抑制了枯萎病。

Salicylic acid-doped iron nano-biostimulants potentiate defense responses and suppress Fusarium wilt in watermelon.

机构信息

State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.

State Key Laboratory of Rice Biology and Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China; Xianghu Laboratory, Hangzhou 311231, China.

出版信息

J Adv Res. 2024 May;59:19-33. doi: 10.1016/j.jare.2023.06.011. Epub 2023 Jun 28.

Abstract

INTRODUCTION

Chemo- and bio-genic metallic nanoparticles (NPs), as a novel nano-enabled strategy, have demonstrated a great potential in crop health management.

OBJECTIVE

The current study aimed to explore the efficacy of advanced nanocomposites (NCs), integrating biogenic (bio) metallic NPs and plant immunity-regulating hormones, in crop disease control.

METHODS

Iron (Fe) NPs were biosynthesized using cell-free supernatant of a Fe-resistant strains, Bacillus marisflavi ZJ-4. Further, salicylic acid-coated bio-FeNPs (SI) NCs were prepared via co-precipitation method under alkaline conditions. Both bio-FeNPs and SINCs were characterized using basic analytical techniques, including Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, and scanning/transmission electron microscopy.

RESULTS

Bio-FeNPs and SINCs had variable shapes with average sizes of 72.35 nm and 65.87 nm, respectively. Under greenhouse conditions, bio-FeNPs and SINCs improved the agronomic traits of the watermelon plants, and SINCs outperformed bio-FeNPs, providing the maximum growth promotion of 32.5%. Soil-drenching with bio-FeNPs and SINCs suppressed Fusarium oxysporum f. sp. niveum-caused Fusarium wilt in watermelon, and SINCs provided better protection than bio-FeNPs, through inhibiting the fungal invasive growth within host plants. SINCs improved the antioxidative capacity and primed a systemic acquired resistance (SAR) response via activating the salicylic acid signaling pathway genes. These findings indicate that SINCs can reduce the severity of Fusarium wilt in watermelon by modulating antioxidative capacity and potentiating SAR to restrict in planta fungal invasive growth.

CONCLUSION

This study provides new insights into the potential of bio-FeNPs and SINCs as biostimulants and bioprotectants for growth promotion and Fusarium wilt suppression, ensuring sustainable watermelon production.

摘要

简介

化学和生物成因的金属纳米粒子(NPs)作为一种新型的纳米技术,在作物健康管理方面显示出巨大的潜力。

目的

本研究旨在探索先进纳米复合材料(NCs)的功效,该复合材料结合了生物成因(bio)金属 NPs 和植物免疫调节激素,用于控制作物病害。

方法

使用耐铁菌株(Bacillus marisflavi ZJ-4)的无细胞上清液生物合成 Fe NPs。进一步,通过共沉淀法在碱性条件下制备水杨酸包覆的生物-FeNPs(SI)NCs。使用基本分析技术,包括傅里叶变换红外(FTIR)光谱、X 射线衍射分析和扫描/透射电子显微镜对生物-FeNPs 和 SINCs 进行了表征。

结果

生物-FeNPs 和 SINCs 具有不同的形状,平均粒径分别为 72.35nm 和 65.87nm。在温室条件下,生物-FeNPs 和 SINCs 改善了西瓜植株的农艺性状,SINCs 的表现优于生物-FeNPs,提供了最大的 32.5%的生长促进作用。土壤浇灌生物-FeNPs 和 SINCs 抑制了西瓜上由尖孢镰刀菌引起的枯萎病,SINCs 比生物-FeNPs 提供了更好的保护,通过抑制真菌在宿主植物内的侵入性生长。SINCs 通过激活水杨酸信号通路基因提高了抗氧化能力并引发了系统获得性抗性(SAR)反应。这些发现表明,SINCs 可以通过调节抗氧化能力和增强 SAR 来限制植物内真菌的侵入性生长,从而减轻西瓜枯萎病的严重程度。

结论

本研究为生物-FeNPs 和 SINCs 作为生物刺激剂和生物保护剂促进生长和抑制枯萎病提供了新的见解,确保了西瓜的可持续生产。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c775/11081969/16fef89fa5ce/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验