Iyer Vasan, Petersen Jan, Geier Sebastian, Wierach Peter
Cluster of Excellence SE2A-Sustainable and Energy-Efficient Aviation, Technische Universität Braunschweig, 38108 Braunschweig, Germany.
Department of Multifunctional Materials, German Aerospace Center (DLR), Institute of Lightweight Systems, Lilienthalplatz 7, 38108 Braunschweig, Germany.
Polymers (Basel). 2024 Oct 3;16(19):2806. doi: 10.3390/polym16192806.
A new approach to developing structural sodium batteries capable of operating in ambient-temperature conditions has been successfully achieved. The developed multifunctional structural electrolyte (SE) using poly(ethylene oxide) (PEO) as a matrix integrated with succinonitrile (SN) plasticizers and glass-fiber (GF) reinforcements identified as GF_PEO-SN-NaClO showed a tensile strength of 32.1 MPa and an ionic conductivity of 1.01 × 10 S cm at room temperature. It displayed a wide electrochemical stability window of 0 to 4.9 V and a high sodium-ion transference number of 0.51 at room temperature. The structural electrode (CF|SE) was fabricated by pressing the structural electrolyte with carbon fibers (CFs), and it showed a tensile strength of 72.3 MPa. The fabricated structural battery half-cell (CF||SE||Na) demonstrated good cycling stability and an energy density of 14.2 Wh kg, and it retained 80% capacity at the end of the 200th cycle. The cycled electrodes were observed using scanning electron microscopy, which revealed small dendrite formation and dense albeit uniform deposition of the sodium metal, helping to avoid a short-circuit of the cell and providing more cycling stability. The developed multifunctional matrix composites demonstrate promising potential for developing ambient-temperature sodium structural batteries.
一种开发能够在环境温度条件下运行的结构钠电池的新方法已成功实现。所开发的以聚环氧乙烷(PEO)为基质、集成了丁二腈(SN)增塑剂和玻璃纤维(GF)增强材料的多功能结构电解质(SE),被确定为GF_PEO - SN - NaClO,在室温下显示出32.1兆帕的拉伸强度和1.01×10 S cm的离子电导率。它在室温下显示出0至4.9伏的宽电化学稳定窗口和0.51的高钠离子迁移数。结构电极(CF|SE)是通过将结构电解质与碳纤维(CFs)压制而成,其拉伸强度为72.3兆帕。所制备的结构电池半电池(CF||SE||Na)表现出良好的循环稳定性和14.2瓦时/千克的能量密度,在第200次循环结束时保留了80%的容量。使用扫描电子显微镜观察循环后的电极,结果显示有小的枝晶形成以及钠金属致密且均匀的沉积,这有助于避免电池短路并提供更高的循环稳定性。所开发的多功能基质复合材料在开发室温钠结构电池方面显示出有前景的潜力。