Institute of Physics-Centre for Science and Education, Silesian University of Technology, Krasińskiego 8, 40-019 Katowice, Poland.
Department of Industrial Informatics, Faculty of Materials Science, Joint Doctorate School, Silesian University of Technology, Krasinskiego 8, 40-019 Katowice, Poland.
Int J Mol Sci. 2024 Sep 24;25(19):10265. doi: 10.3390/ijms251910265.
This work describes a novel method for converting bismuth triiodide (BiI) microplates into bismuth oxyiodide (BiOI) nanoflakes under ultrasonic irradiation. To produce BiOI nanoflakes with a high yield and high purity, the conversion process was carefully adjusted. Rapid reaction kinetics and increased mass transfer are benefits of the ultrasonic-assisted approach that result in well-defined converted BiOI nanostructures with superior characteristics. The produced BiOI nanoflakes were examined utilizing a range of analytical methods, such as Transmission Electron Microscopy (TEM), scanning electron microscopy (SEM) and X-ray diffraction (XRD). The progress in the ultrasonic conversion process with time was monitored through diffuse reflectance spectroscopy (DRS). The outcomes demonstrated the effective conversion of BiI microplates into crystalline, homogeneous, high-surface-area BiOI nanoflakes. Additionally, the degradation of organic dyes (methylene blue) under ultraviolet (UV) light irradiation was used to assess the photocatalytic efficacy of the produced BiOI nanoflakes. Because of their distinct morphology and electrical structure, the BiOI nanoflakes remarkably demonstrated remarkable photocatalytic activity, outperforming traditional photocatalysts. The ability of BiOI nanoflakes to effectively separate and utilize visible light photons makes them a viable option for environmental remediation applications. This work not only shows the promise of BiOI nanoflakes for sustainable photocatalytic applications but also demonstrates a simple and scalable approach to their manufacturing. The knowledge gathered from this work opens up new avenues for investigating ultrasonic-assisted techniques for creating sophisticated nanomaterials with customized characteristics for a range of technological uses.
这项工作描述了一种将三碘化铋(BiI)微板转化为氧碘化铋(BiOI)纳米片的新方法,该方法在超声辐射下进行。为了以高产率和高纯度生产 BiOI 纳米片,仔细调整了转化过程。超声辅助方法的快速反应动力学和增加的传质是其优势,可得到具有优异特性的定义明确的转化 BiOI 纳米结构。使用一系列分析方法,例如透射电子显微镜(TEM)、扫描电子显微镜(SEM)和 X 射线衍射(XRD)对所制备的 BiOI 纳米片进行了检查。通过漫反射光谱(DRS)监测超声转化过程随时间的进展。结果表明,BiI 微板有效地转化为结晶、均匀、高表面积的 BiOI 纳米片。此外,通过在紫外(UV)光照射下降解有机染料(亚甲基蓝)来评估所制备的 BiOI 纳米片的光催化效率。由于其独特的形态和电气结构,BiOI 纳米片表现出显著的光催化活性,优于传统光催化剂。BiOI 纳米片有效分离和利用可见光光子的能力使其成为环境修复应用的可行选择。这项工作不仅展示了 BiOI 纳米片在可持续光催化应用中的前景,还展示了一种简单且可扩展的制造方法。这项工作所获得的知识为研究超声辅助技术开辟了新途径,这些技术可用于创建具有定制特性的复杂纳米材料,以满足各种技术用途的需求。