Shandong Provincial Key Laboratory/Collaborative Innovation Center of Chemical Energy Storage, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, China.
Int J Mol Sci. 2024 Oct 1;25(19):10608. doi: 10.3390/ijms251910608.
Solar-driven CO conversion into high-value-added chemicals, powered by photovoltaics, is a promising technology for alleviating the global energy crisis and achieving carbon neutrality. However, most of these endeavors focus on CO electroreduction to small-molecule fuels such as CO and ethanol. In this paper, inspired by the photosynthesis of green plants and artificial photosynthesis for the electroreduction of CO into value-added fuel, CO artificial photosynthesis for the electrocarboxylation of bromobenzene (BB) with CO to generate the value-added carboxylation product methyl benzoate (MB) is demonstrated. Using two series-connected dye-sensitized photovoltaics and high-performance catalyst Ag electrodes, our artificial photosynthesis system achieves a 61.1% Faraday efficiency (FE) for carboxylation product MB and stability of the whole artificial photosynthesis for up to 4 h. In addition, this work provides a promising approach for the artificial photosynthesis of CO electrocarboxylation into high-value chemicals using renewable energy sources.
太阳能驱动的 CO 转化为高附加值化学品,由光伏供电,是缓解全球能源危机和实现碳中和的有前途的技术。然而,这些努力大多集中在 CO 电还原为小分子燃料,如 CO 和乙醇。在本文中,受绿色植物光合作用和人工光合作用将 CO 电还原为增值燃料的启发,我们展示了 CO 人工光合作用将溴苯(BB)与 CO 电羧化为增值羧化产物苯甲酸甲酯(MB)。使用两个串联的染料敏化光伏电池和高性能催化剂 Ag 电极,我们的人工光合作用系统实现了羧化产物 MB 的 61.1%的法拉第效率(FE)和整个人工光合作用长达 4 小时的稳定性。此外,这项工作为利用可再生能源进行 CO 电羧化合成高价值化学品的人工光合作用提供了有前途的方法。