Liu Chong, Gallagher Joseph J, Sakimoto Kelsey K, Nichols Eva M, Chang Christopher J, Chang Michelle C Y, Yang Peidong
%Kavli Energy NanoSciences Institute, Berkeley, California 94720, United States.
Nano Lett. 2015 May 13;15(5):3634-9. doi: 10.1021/acs.nanolett.5b01254. Epub 2015 Apr 7.
Direct solar-powered production of value-added chemicals from CO2 and H2O, a process that mimics natural photosynthesis, is of fundamental and practical interest. In natural photosynthesis, CO2 is first reduced to common biochemical building blocks using solar energy, which are subsequently used for the synthesis of the complex mixture of molecular products that form biomass. Here we report an artificial photosynthetic scheme that functions via a similar two-step process by developing a biocompatible light-capturing nanowire array that enables a direct interface with microbial systems. As a proof of principle, we demonstrate that a hybrid semiconductor nanowire-bacteria system can reduce CO2 at neutral pH to a wide array of chemical targets, such as fuels, polymers, and complex pharmaceutical precursors, using only solar energy input. The high-surface-area silicon nanowire array harvests light energy to provide reducing equivalents to the anaerobic bacterium, Sporomusa ovata, for the photoelectrochemical production of acetic acid under aerobic conditions (21% O2) with low overpotential (η < 200 mV), high Faradaic efficiency (up to 90%), and long-term stability (up to 200 h). The resulting acetate (∼6 g/L) can be activated to acetyl coenzyme A (acetyl-CoA) by genetically engineered Escherichia coli and used as a building block for a variety of value-added chemicals, such as n-butanol, polyhydroxybutyrate (PHB) polymer, and three different isoprenoid natural products. As such, interfacing biocompatible solid-state nanodevices with living systems provides a starting point for developing a programmable system of chemical synthesis entirely powered by sunlight.
直接利用太阳能将二氧化碳和水转化为增值化学品,这一模拟自然光合作用的过程具有重要的基础研究意义和实际应用价值。在自然光合作用中,二氧化碳首先利用太阳能被还原为常见的生物化学构件,随后这些构件被用于合成构成生物质的复杂分子产物混合物。在此,我们报告了一种人工光合作用方案,该方案通过开发一种生物相容性光捕获纳米线阵列,以类似的两步过程发挥作用,该阵列能够与微生物系统直接对接。作为原理验证,我们证明了一种混合半导体纳米线-细菌系统仅利用太阳能输入,就能在中性pH条件下将二氧化碳还原为多种化学目标产物,如燃料、聚合物和复杂的药物前体。高表面积的硅纳米线阵列收集光能,为厌氧细菌卵形芽孢杆菌提供还原当量,用于在有氧条件(21% O2)下光电化学生产乙酸,具有低过电位(η < 200 mV)、高法拉第效率(高达90%)和长期稳定性(长达200小时)。产生的乙酸盐(约6 g/L)可被基因工程改造的大肠杆菌激活为乙酰辅酶A(acetyl-CoA),并用作多种增值化学品的构件,如正丁醇、聚羟基丁酸酯(PHB)聚合物和三种不同的类异戊二烯天然产物。因此,将生物相容性固态纳米器件与生物系统对接为开发完全由阳光驱动的可编程化学合成系统提供了一个起点。