Suppr超能文献

基于雷达技术的人工智能姿势评估:案例研究。

Artificial Intelligence for the Evaluation of Postures Using Radar Technology: A Case Study.

机构信息

Department of Electrical, Computer and Biomedical Engineering, University of Pavia, 27100 Pavia, Italy.

出版信息

Sensors (Basel). 2024 Sep 25;24(19):6208. doi: 10.3390/s24196208.

Abstract

In the last few decades, major progress has been made in the medical field; in particular, new treatments and advanced health technologies allow for considerable improvements in life expectancy and, more broadly, in quality of life. As a consequence, the number of elderly people is expected to increase in the following years. This trend, along with the need to improve the independence of frail people, has led to the development of unobtrusive solutions to monitor daily activities and provide feedback in case of risky situations and falls. Monitoring devices based on radar sensors represent a possible approach to tackle postural analysis while preserving the person's privacy and are especially useful in domestic environments. This work presents an innovative solution that combines millimeter-wave radar technology with artificial intelligence (AI) to detect different types of postures: a series of algorithms and neural network methodologies are evaluated using experimental acquisitions with healthy subjects. All methods produce very good results according to the main parameters evaluating performance; the long short-term memory (LSTM) and GRU show the most consistent results while, at the same time, maintaining reduced computational complexity, thus providing a very good candidate to be implemented in a dedicated embedded system designed to monitor postures.

摘要

在过去的几十年中,医学领域取得了重大进展;特别是新的治疗方法和先进的健康技术,使得预期寿命和更广泛的生活质量有了相当大的提高。因此,预计未来几年老年人的数量将会增加。这一趋势,以及提高体弱人群独立性的需求,促使人们开发了一些不引人注目的解决方案,以监测日常活动,并在出现危险情况和跌倒时提供反馈。基于雷达传感器的监测设备是一种可能的方法,可以在保护个人隐私的同时进行姿势分析,尤其适用于家庭环境。这项工作提出了一种创新的解决方案,将毫米波雷达技术与人工智能(AI)相结合,以检测不同类型的姿势:使用健康受试者的实验采集来评估一系列算法和神经网络方法。所有方法根据评估性能的主要参数都产生了非常好的结果;长短期记忆(LSTM)和门控循环单元(GRU)显示出最一致的结果,同时保持了较低的计算复杂度,因此是在专门设计用于监测姿势的嵌入式系统中实现的一个很好的候选方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7230/11478366/af44c999cc15/sensors-24-06208-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验