Ma Yufei, Jiang Yunan, Li Chong
James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK.
Sensors (Basel). 2024 Sep 26;24(19):6230. doi: 10.3390/s24196230.
This study presents a comprehensive model for ultrasonic energy transfer (UET) using a 33-mode piezoelectric transducer to advance wireless sensor powering in challenging environments. One of the advantages of UET is that it is not stoppable by electromagnetic shielding and can penetrate metal. Existing models focus on feasibility and numerical analysis but lack an effective link between input and output power in different media applications. The proposed model fills this gap by incorporating key factors of link loss, including resonant frequency, impedance matching, acoustic coupling, and boundary conditions, to predict energy transfer efficiency more accurately. The model is validated through numerical simulations and experimental tests in air, metal, and underwater environments. An error analysis has shown that the maximum error between theoretical and experimental responses is 3.11% (air), 27.37% (water), and 1.76% (aluminum). This research provides valuable insights into UET dynamics and offers practical guidelines for developing efficient wireless powering solutions for sensors in difficult-to-access or electromagnetically shielded conditions.
本研究提出了一种使用33模式压电换能器进行超声能量传输(UET)的综合模型,以推动在具有挑战性的环境中为无线传感器供电。UET的优点之一是它不会被电磁屏蔽阻挡,并且可以穿透金属。现有模型侧重于可行性和数值分析,但在不同介质应用中缺乏输入功率和输出功率之间的有效联系。所提出的模型通过纳入链路损耗的关键因素,包括谐振频率、阻抗匹配、声耦合和边界条件,来更准确地预测能量传输效率,从而填补了这一空白。该模型通过在空气、金属和水下环境中的数值模拟和实验测试进行了验证。误差分析表明,理论响应与实验响应之间的最大误差分别为3.11%(空气)、27.37%(水)和1.76%(铝)。本研究为UET动力学提供了有价值的见解,并为在难以接近或电磁屏蔽条件下为传感器开发高效无线供电解决方案提供了实用指南。