Centre for Addiction and Mental Health, Toronto, ON M6J 1H4, Canada.
Sage Bionetworks, Seattle, WA 98121, USA.
Sensors (Basel). 2024 Sep 26;24(19):6246. doi: 10.3390/s24196246.
Healthcare researchers are increasingly utilizing smartphone sensor data as a scalable and cost-effective approach to studying individualized health-related behaviors in real-world settings. However, to develop reliable and robust digital behavioral signatures that may help in the early prediction of the individualized disease trajectory and future prognosis, there is a critical need to quantify the potential variability that may be present in the underlying sensor data due to variations in the smartphone hardware and software used by large population. Using sensor data collected in real-world settings from 3000 participants' smartphones for up to 84 days, we compared differences in the completeness, correctness, and consistency of the three most common smartphone sensors-the accelerometer, gyroscope, and GPS- within and across Android and iOS devices. Our findings show considerable variation in sensor data quality within and across Android and iOS devices. Sensor data from iOS devices showed significantly lower levels of anomalous point density (APD) compared to Android across all sensors ( < 1 × 10). iOS devices showed a considerably lower missing data ratio (MDR) for the accelerometer compared to the GPS data ( < 1 × 10). Notably, the quality features derived from raw sensor data across devices alone could predict the device type (Android vs. iOS) with an up to 0.98 accuracy 95% CI [0.977, 0.982]. Such significant differences in sensor data quantity and quality gathered from iOS and Android platforms could lead to considerable variation in health-related inference derived from heterogenous consumer-owned smartphones. Our research highlights the importance of assessing, measuring, and adjusting for such critical differences in smartphone sensor-based assessments. Understanding the factors contributing to the variation in sensor data based on daily device usage will help develop reliable, standardized, inclusive, and practically applicable digital behavioral patterns that may be linked to health outcomes in real-world settings.
医疗保健研究人员越来越多地利用智能手机传感器数据,作为一种可扩展且具有成本效益的方法,在真实环境中研究与个人健康相关的行为。然而,为了开发可靠且稳健的数字行为特征,这些特征可能有助于早期预测个人疾病轨迹和未来预后,我们迫切需要量化由于大规模人群使用的智能手机硬件和软件的变化而可能存在于基础传感器数据中的潜在可变性。我们使用来自 3000 名参与者智能手机的真实环境中收集的传感器数据,最长达 84 天,比较了三种最常见的智能手机传感器(加速度计、陀螺仪和 GPS)在 Android 和 iOS 设备内部和跨设备的完整性、正确性和一致性方面的差异。我们的研究结果表明,在 Android 和 iOS 设备内部和跨设备的传感器数据质量存在相当大的差异。与所有传感器相比,iOS 设备的传感器数据异常点密度(APD)明显较低( < 1 × 10)。与 GPS 数据相比,iOS 设备的加速度计的缺失数据率(MDR)明显较低( < 1 × 10)。值得注意的是,仅从跨设备的原始传感器数据中得出的质量特征就可以以高达 0.98 的准确率预测设备类型(Android 与 iOS)(95%CI [0.977, 0.982])。从 iOS 和 Android 平台收集的传感器数据数量和质量的显著差异可能导致从异质消费者拥有的智能手机中得出的与健康相关的推断存在相当大的差异。我们的研究强调了评估、测量和调整基于智能手机传感器的评估中此类关键差异的重要性。了解基于日常设备使用导致传感器数据变化的因素将有助于开发可靠、标准化、包容和实际适用的数字行为模式,这些模式可能与真实环境中的健康结果相关联。