Department of Electrical Engineering (Age Service-Tech), Kyung Hee University, Seoul 02447, Republic of Korea.
Department of Artificial Intelligence, College of Software, Kyung Hee University, Seoul 02447, Republic of Korea.
Sensors (Basel). 2024 Sep 27;24(19):6275. doi: 10.3390/s24196275.
This study explores manipulator control using reinforcement learning, specifically targeting anthropomorphic gripper-equipped robots, with the objective of enhancing the robots' ability to safely exchange diverse objects with humans during human-robot interactions (HRIs). The study integrates an adaptive HRI hand for versatile grasping and incorporates image recognition for efficient object identification and precise coordinate estimation. A tailored reinforcement-learning environment enables the robot to dynamically adapt to diverse scenarios. The effectiveness of this approach is validated through simulations and real-world applications. The HRI hand's adaptability ensures seamless interactions, while image recognition enhances cognitive capabilities. The reinforcement-learning framework enables the robot to learn and refine skills, demonstrated through successful navigation and manipulation in various scenarios. The transition from simulations to real-world applications affirms the practicality of the proposed system, showcasing its robustness and potential for integration into practical robotic platforms. This study contributes to advancing intelligent and adaptable robotic systems for safe and dynamic HRIs.
本研究探索使用强化学习进行机械臂控制,特别是针对配备拟人夹持器的机器人,旨在增强机器人在人机交互(HRI)期间与人类安全交换各种物体的能力。该研究集成了自适应 HRI 手,用于多功能抓取,并结合图像识别,实现高效的物体识别和精确坐标估计。定制的强化学习环境使机器人能够动态适应各种场景。通过仿真和实际应用验证了这种方法的有效性。HRI 手的适应性确保了无缝交互,而图像识别则增强了认知能力。强化学习框架使机器人能够学习和改进技能,在各种场景中成功导航和操作证明了这一点。从仿真到实际应用的转变证实了所提出系统的实用性,展示了其在集成到实际机器人平台中的稳健性和潜力。本研究为安全和动态 HRI 推进智能和适应性机器人系统做出了贡献。