Suppr超能文献

基于 CNN-LSTM-SE 算法的心律失常分类模型。

An Arrhythmia Classification Model Based on a CNN-LSTM-SE Algorithm.

机构信息

School of Electrical and Information Engineering, North Minzu University, North Wenchang Road, Yinchuan 750021, China.

Key Laboratory of Atmospheric Environment Remote Sensing of Ningxia, North Wenchang Road, Yinchuan 750021, China.

出版信息

Sensors (Basel). 2024 Sep 29;24(19):6306. doi: 10.3390/s24196306.

Abstract

Arrhythmia is the main cause of sudden cardiac death, and ECG signal analysis is a common method for the noninvasive diagnosis of arrhythmia. In this paper, we propose an arrhythmia classification model based on the combination of a channel attention mechanism (SE module), convolutional neural network (CNN), and long short-term memory neural network (LSTM). The data of this model use the MIT-BIH arrhythmia database, and after noise reduction of raw ECG data by the EEMD denoising algorithm, a CNN-LSTM is used to learn features from the data, and the fusion channel attention mechanism is used to adjust the weight of the feature map. The CNN-LSTM-SE model is compared with the LSTM, CNN-LSTM, and LSTM-attention models, and the models are evaluated using Precision, Recall, and F1-Score. The classification performance of the tested CNN-LSTM-SE classification prediction model is better, with a classification accuracy of 98.5%, a classification precision rate of more than 97% for each label, a recall rate of more than 98%, and an F1-score of more than 0.98. It meets the requirements of arrhythmia classification prediction and has a certain practical value.

摘要

心律失常是导致心源性猝死的主要原因,而心电图(ECG)信号分析是心律失常无创诊断的常用方法。本文提出了一种基于通道注意力机制(SE 模块)、卷积神经网络(CNN)和长短时记忆神经网络(LSTM)相结合的心律失常分类模型。该模型的数据来源于麻省理工学院-贝斯以色列女执事医疗中心(MIT-BIH)心律失常数据库,通过 EEMD 去噪算法对原始 ECG 数据进行降噪后,使用 CNN-LSTM 从数据中学习特征,并使用融合通道注意力机制调整特征图的权重。将 CNN-LSTM-SE 模型与 LSTM、CNN-LSTM 和 LSTM-attention 模型进行比较,并使用精度(Precision)、召回率(Recall)和 F1-分数(F1-Score)对模型进行评估。测试的 CNN-LSTM-SE 分类预测模型的分类性能更好,分类准确率为 98.5%,每个标签的分类精度均高于 97%,召回率高于 98%,F1-分数高于 0.98。它满足心律失常分类预测的要求,具有一定的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d287/11478372/e86207e5c665/sensors-24-06306-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验