Suppr超能文献

使用基于数据复制的深度神经网络改善物联网无线传感器网络中的定位

Improving Localization in Wireless Sensor Networks for the Internet of Things Using Data Replication-Based Deep Neural Networks.

作者信息

Esheh Jehan, Affes Sofiene

机构信息

EMT Centre (Energy, Materials and Telecommunications), INRS (Institut National de la Recherche Scientifique), Université du Québec, Montréal, QC H5A 1K6, Canada.

出版信息

Sensors (Basel). 2024 Sep 29;24(19):6314. doi: 10.3390/s24196314.

Abstract

Localization is one of the most challenging problems in wireless sensor networks (WSNs), primarily driven by the need to develop an accurate and cost-effective localization system for Internet of Things (IoT) applications. While machine learning (ML) algorithms have been widely applied in various WSN-based tasks, their effectiveness is often compromised by limited training data, leading to issues such as overfitting and reduced accuracy, especially when the number of sensor nodes is low. A key strategy to mitigate overfitting involves increasing both the quantity and diversity of the training data. To address the limitations posed by small datasets, this paper proposes an intelligent data augmentation strategy (DAS)-based deep neural network (DNN) that enhances the localization accuracy of WSNs. The proposed DAS replicates the estimated positions of unknown nodes generated by the Dv-hop algorithm and introduces Gaussian noise to these replicated positions, creating multiple modified datasets. By combining the modified datasets with the original training data, we significantly increase the dataset size, which leads to a substantial reduction in normalized root mean square error (NRMSE). The experimental results demonstrate that this data augmentation technique significantly improves the performance of DNNs compared to the traditional Dv-hop algorithm at a low number of nodes while maintaining an efficient computational cost for data augmentation. Therefore, the proposed method provides a scalable and effective solution for enhancing the localization accuracy of WSNs.

摘要

定位是无线传感器网络(WSN)中最具挑战性的问题之一,主要是因为需要为物联网(IoT)应用开发一种准确且经济高效的定位系统。虽然机器学习(ML)算法已广泛应用于各种基于WSN的任务中,但其有效性常常因训练数据有限而受到影响,导致诸如过拟合和精度降低等问题,尤其是在传感器节点数量较少时。减轻过拟合的一个关键策略是增加训练数据的数量和多样性。为了解决小数据集带来的局限性,本文提出了一种基于智能数据增强策略(DAS)的深度神经网络(DNN),以提高WSN的定位精度。所提出的DAS复制了由Dv-hop算法生成的未知节点的估计位置,并向这些复制位置引入高斯噪声,从而创建多个修改后的数据集。通过将修改后的数据集与原始训练数据相结合,我们显著增加了数据集的大小,这导致归一化均方根误差(NRMSE)大幅降低。实验结果表明,与传统的Dv-hop算法相比,这种数据增强技术在节点数量较少时显著提高了DNN的性能,同时保持了数据增强的高效计算成本。因此,所提出的方法为提高WSN的定位精度提供了一种可扩展且有效的解决方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e05/11478670/66f09d646dfb/sensors-24-06314-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验