Suppr超能文献

利用噪声注入提取用于时间序列分类的特征。

Extraction of Features for Time Series Classification Using Noise Injection.

作者信息

Kim Gyu Il, Chung Kyungyong

机构信息

Department of Computer Science, Kyonggi University, Suwon 16227, Republic of Korea.

Division of AI Computer Science and Engineering, Kyonggi University, Suwon 16227, Republic of Korea.

出版信息

Sensors (Basel). 2024 Oct 2;24(19):6402. doi: 10.3390/s24196402.

Abstract

Time series data often display complex, time-varying patterns, which pose significant challenges for effective classification due to data variability, noise, and imbalance. Traditional time series classification techniques frequently fall short in addressing these issues, leading to reduced generalization performance. Therefore, there is a need for innovative methodologies to enhance data diversity and quality. In this paper, we introduce a method for the extraction of features for time series classification using noise injection to address these challenges. By employing noise injection techniques for data augmentation, we enhance the diversity of the training data. Utilizing digital signal processing (DSP), we extract key frequency features from time series data through sampling, quantization, and Fourier transformation. This process enhances the quality of the training data, thereby maximizing the model's generalization performance. We demonstrate the superiority of our proposed method by comparing it with existing time series classification models. Additionally, we validate the effectiveness of our approach through various experimental results, confirming that data augmentation and DSP techniques are potent tools in time series data classification. Ultimately, this research presents a robust methodology for time series data analysis and classification, with potential applications across a broad spectrum of data analysis problems.

摘要

时间序列数据常常呈现出复杂的、随时间变化的模式,由于数据的可变性、噪声和不平衡性,这些模式给有效的分类带来了重大挑战。传统的时间序列分类技术在解决这些问题时常常不足,导致泛化性能下降。因此,需要创新的方法来提高数据的多样性和质量。在本文中,我们介绍一种使用噪声注入来提取时间序列分类特征的方法,以应对这些挑战。通过采用噪声注入技术进行数据增强,我们提高了训练数据的多样性。利用数字信号处理(DSP),我们通过采样、量化和傅里叶变换从时间序列数据中提取关键频率特征。这一过程提高了训练数据的质量,从而使模型的泛化性能最大化。我们通过将所提出的方法与现有的时间序列分类模型进行比较,证明了其优越性。此外,我们通过各种实验结果验证了我们方法的有效性,证实了数据增强和DSP技术是时间序列数据分类中的有力工具。最终,本研究提出了一种用于时间序列数据分析和分类的稳健方法,在广泛的数据分析师问题中具有潜在应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3da4/11478850/6e9887002f58/sensors-24-06402-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验