Suppr超能文献

使用生成对抗网络进行3D人体姿态数据增强以用于机器人辅助运动质量评估。

3D human pose data augmentation using Generative Adversarial Networks for robotic-assisted movement quality assessment.

作者信息

Wang Xuefeng, Mi Yang, Zhang Xiang

机构信息

College of Sports, Woosuk University, Jeonju, Republic of Korea.

College of Sports and Health, Linyi University, Linyi, China.

出版信息

Front Neurorobot. 2024 Apr 5;18:1371385. doi: 10.3389/fnbot.2024.1371385. eCollection 2024.

Abstract

In the realm of human motion recognition systems, the augmentation of 3D human pose data plays a pivotal role in enriching and enhancing the quality of original datasets through the generation of synthetic data. This augmentation is vital for addressing the current research gaps in diversity and complexity, particularly when dealing with rare or complex human movements. Our study introduces a groundbreaking approach employing Generative Adversarial Networks (GANs), coupled with Support Vector Machine (SVM) and DenseNet, further enhanced by robot-assisted technology to improve the precision and efficiency of data collection. The GANs in our model are responsible for generating highly realistic and diverse 3D human motion data, while SVM aids in the effective classification of this data. DenseNet is utilized for the extraction of key features, facilitating a comprehensive and integrated approach that significantly elevates both the data augmentation process and the model's ability to process and analyze complex human movements. The experimental outcomes underscore our model's exceptional performance in motion quality assessment, showcasing a substantial improvement over traditional methods in terms of classification accuracy and data processing efficiency. These results validate the effectiveness of our integrated network model, setting a solid foundation for future advancements in the field. Our research not only introduces innovative methodologies for 3D human pose data enhancement but also provides substantial technical support for practical applications across various domains, including sports science, rehabilitation medicine, and virtual reality. By combining advanced algorithmic strategies with robotic technologies, our work addresses key challenges in data augmentation and motion quality assessment, paving the way for new research and development opportunities in these critical areas.

摘要

在人体运动识别系统领域,3D人体姿态数据增强通过生成合成数据,在丰富和提升原始数据集质量方面发挥着关键作用。这种增强对于解决当前在多样性和复杂性方面的研究差距至关重要,特别是在处理罕见或复杂的人体运动时。我们的研究引入了一种开创性方法,该方法采用生成对抗网络(GAN),并结合支持向量机(SVM)和密集连接网络(DenseNet),通过机器人辅助技术进一步增强,以提高数据收集的精度和效率。我们模型中的GAN负责生成高度逼真且多样的3D人体运动数据,而SVM有助于对这些数据进行有效分类。DenseNet用于提取关键特征,促进一种全面且集成的方法,显著提升了数据增强过程以及模型处理和分析复杂人体运动的能力。实验结果强调了我们的模型在运动质量评估方面的卓越性能,在分类准确性和数据处理效率方面比传统方法有了显著提高。这些结果验证了我们集成网络模型的有效性,为该领域未来的发展奠定了坚实基础。我们的研究不仅引入了用于3D人体姿态数据增强的创新方法,还为包括体育科学、康复医学和虚拟现实在内的各个领域的实际应用提供了大量技术支持。通过将先进的算法策略与机器人技术相结合,我们的工作解决了数据增强和运动质量评估中的关键挑战,为这些关键领域的新研究和开发机会铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c9/11032046/567a174003e7/fnbot-18-1371385-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验