Zhu Xuedong, Liu Jianhua, Ao Xiaohui, Xia Huanxiong, Huang Sihan, Zhu Lijian, Li Xiaoqiang, Du Changlin
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Tangshan Research Institute, Beijing Institute of Technology, Tangshan 063015, China.
Sensors (Basel). 2024 Oct 6;24(19):6460. doi: 10.3390/s24196460.
Digital image correlation (DIC), a widely used non-contact measurement technique, often requires empirical tuning of several algorithmic parameters to strike a balance between computational accuracy and efficiency. This paper introduces a novel uncertainty analysis approach aimed at optimizing the parameter intervals of a DIC algorithm. Specifically, the method leverages the inverse compositional Gauss-Newton algorithm combined with a prediction-correction scheme (IC-GN-PC), considering three critical parameters as interval variables. Uncertainty analysis is conducted using a non-probabilistic interval-based multidimensional parallelepiped model, where accuracy and efficiency serve as the reliability indexes. To achieve both high computational accuracy and efficiency, these two reliability indexes are simultaneously improved by optimizing the chosen parameter intervals. The optimized algorithm parameters are subsequently tested and validated through two case studies. The proposed method can be generalized to enhance multiple aspects of an algorithm's performance by optimizing the relevant parameter intervals.
数字图像相关(DIC)是一种广泛应用的非接触测量技术,通常需要对几个算法参数进行经验调整,以在计算精度和效率之间取得平衡。本文介绍了一种新颖的不确定性分析方法,旨在优化DIC算法的参数区间。具体而言,该方法利用逆合成高斯-牛顿算法结合预测-校正方案(IC-GN-PC),将三个关键参数视为区间变量。使用基于非概率区间的多维平行六面体模型进行不确定性分析,其中精度和效率作为可靠性指标。为了实现高计算精度和效率,通过优化所选参数区间同时提高这两个可靠性指标。随后通过两个案例研究对优化后的算法参数进行了测试和验证。所提出的方法可以推广到通过优化相关参数区间来提升算法性能的多个方面。