Suppr超能文献

三阴性乳腺癌的二次转录组分析揭示了可靠的通用和亚型特异性机制标志物。

Secondary Transcriptomic Analysis of Triple-Negative Breast Cancer Reveals Reliable Universal and Subtype-Specific Mechanistic Markers.

作者信息

Rapier-Sharman Naomi, Spendlove Mauri Dobbs, Poulsen Jenna Birchall, Appel Amanda E, Wiscovitch-Russo Rosana, Vashee Sanjay, Gonzalez-Juarbe Norberto, Pickett Brett E

机构信息

Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT 84602, USA.

Infectious Diseases and Genomic Medicine Group, J. Craig Venter Institute, Rockville, MD 20850, USA.

出版信息

Cancers (Basel). 2024 Oct 2;16(19):3379. doi: 10.3390/cancers16193379.

Abstract

: Breast cancer is diagnosed in 2.3 million women each year and kills 685,000 (~30% of patients) worldwide. The prognosis for many breast cancer subtypes has improved due to treatments targeting the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2). In contrast, patients with triple-negative breast cancer (TNBC) tumors, which lack all three commonly targeted membrane markers, more frequently relapse and have lower survival rates due to a lack of tumor-selective TNBC treatments. We aim to investigate TNBC mechanistic markers that could be targeted for treatment. We performed a secondary TNBC analysis of 196 samples across 10 publicly available bulk RNA-sequencing studies to better understand the molecular mechanism(s) of disease and predict robust mechanistic markers that could be used to improve the mechanistic understanding of and diagnostic capabilities for TNBC. Our analysis identified ~12,500 significant differentially expressed genes (FDR-adjusted -value < 0.05), including KIF14 and ELMOD3, and two significantly modulated pathways. Additionally, our novel findings include highly accurate mechanistic markers identified using machine learning methods, including CIDEC (97.1% accuracy alone), CD300LG, ASPM, and RGS1 (98.9% combined accuracy), as well as TNBC subtype-differentiating mechanistic markers, including the targets PDE3B, CFD, IFNG, and ADM, which have associated therapeutics that can potentially be repurposed to improve treatment options. We then experimentally and computationally validated a subset of these findings. The results of our analyses can be used to better understand the mechanism(s) of disease and contribute to the development of improved diagnostics and/or treatments for TNBC.

摘要

每年有230万女性被诊断出患有乳腺癌,全球有68.5万人(约占患者的30%)死于乳腺癌。由于针对雌激素受体(ER)、孕激素受体(PR)和人表皮生长因子受体2(HER2)的治疗,许多乳腺癌亚型的预后有所改善。相比之下,三阴性乳腺癌(TNBC)肿瘤患者缺乏所有三种常见的靶向膜标记物,由于缺乏针对TNBC的肿瘤选择性治疗,这些患者更容易复发且生存率较低。我们旨在研究可作为治疗靶点的TNBC机制标记物。我们对10项公开的批量RNA测序研究中的196个样本进行了TNBC二次分析,以更好地了解疾病的分子机制,并预测可用于改善对TNBC的机制理解和诊断能力的可靠机制标记物。我们的分析确定了约12500个显著差异表达基因(FDR校正P值<0.05),包括KIF14和ELMOD3,以及两条显著调节的通路。此外,我们的新发现包括使用机器学习方法确定的高度准确的机制标记物,包括CIDEC(单独准确率97.1%)、CD300LG、ASPM和RGS1(联合准确率98.9%),以及TNBC亚型分化机制标记物,包括靶点PDE3B、CFD、IFNG和ADM,它们相关的治疗药物可能可以重新用于改善治疗选择。然后,我们通过实验和计算验证了这些发现的一个子集。我们的分析结果可用于更好地了解疾病机制,并有助于开发改进的TNBC诊断方法和/或治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b7f/11476281/67eb69b23fb4/cancers-16-03379-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验