文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过 RNA 测序数据分析和分类模型发现 ER+ 和 TN 乳腺癌新型枢纽基因。

On discovery of novel hub genes for ER+ and TN breast cancer types through RNA seq data analyses and classification models.

机构信息

Computational Biology and Bioinformatics Group (CBBG), Department of Biosciences, COMSATS University Islamabad, Park Road Islamabad, Islamabad, Pakistan.

Pakistan Agriculture Research Council, Islamabad, Pakistan.

出版信息

Sci Rep. 2024 Sep 6;14(1):20840. doi: 10.1038/s41598-024-69721-9.


DOI:10.1038/s41598-024-69721-9
PMID:39242688
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11379961/
Abstract

Breast cancer (BC) is a malignant neoplasm which is classified into various types defined by underlying molecular factors such as estrogen receptor positive (ER+), progesterone receptor positive (PR+), human epidermal growth factor positive (HER2+) and triple negative (TNBC). Early detection of ER+ and TNBC is crucial in the choice of diagnosis and appropriate treatment strategy. Here we report the key genes associated to ER+ and TNBC using RNA-Seq analysis and machine learning models. Three ER+ and TNBC RNA seq datasets comprising 164 patients in-toto were selected for standard NGS hierarchical data processing and data analyses protocols. Enrichment pathway analysis and network analysis was done and finally top hub genes were identified. To come with a reliable classifier which could distinguish the distinct transcriptome patterns associated to ER+ and TNBC, ML models were built employing Naïve Bayes, SVM and kNN. 1730 common DEG's exhibiting significant logFC values with 0.05 p-value threshold were identified. A list of top ten hub genes were screened on the basis of maximal clique centrality (MCC) which included CDC20, CDK1, BUB1, AURKA, CDCA8, RRM2, TTK, CENPF, CEP55 and NDC80.These genes were found to be involved in crucial cell cycle pathways. k-Nearest Neighbor (kNN) model was observed to be best classifier with accuracy 84%, specificity 66% and sensitivity 95% to differentiate between ER+ and TNBC RNA-Seq transcriptomes. Our screened list of 10 hub genes can thus help unearth novel molecular signatures implicated in ER+ and TNBC onset, prognosis and design of novel protocols for breast cancer diagnostics and therapeutics.

摘要

乳腺癌(BC)是一种恶性肿瘤,根据潜在的分子因素分为不同类型,如雌激素受体阳性(ER+)、孕激素受体阳性(PR+)、人表皮生长因子阳性(HER2+)和三阴性(TNBC)。早期发现 ER+和 TNBC 对于诊断和选择合适的治疗策略至关重要。在这里,我们使用 RNA-Seq 分析和机器学习模型报告与 ER+和 TNBC 相关的关键基因。选择了三个 ER+和 TNBC RNA seq 数据集,共包含 164 名患者,用于标准 NGS 分层数据处理和数据分析协议。进行了富集途径分析和网络分析,最终确定了顶级枢纽基因。为了构建一个能够区分与 ER+和 TNBC 相关的不同转录组模式的可靠分类器,我们构建了 ML 模型,包括朴素贝叶斯、SVM 和 kNN。鉴定出 1730 个具有 0.05 p 值阈值的显著 logFC 值的常见差异表达基因。根据最大团中心度(MCC)筛选出前 10 个枢纽基因,包括 CDC20、CDK1、BUB1、AURKA、CDCA8、RRM2、TTK、CENPF、CEP55 和 NDC80。这些基因被发现参与了关键的细胞周期途径。k-Nearest Neighbor (kNN) 模型被观察到是最佳分类器,其准确率为 84%,特异性为 66%,敏感性为 95%,可区分 ER+和 TNBC RNA-Seq 转录组。因此,我们筛选出的 10 个枢纽基因列表可以帮助发现与 ER+和 TNBC 发生、预后相关的新分子特征,并为乳腺癌诊断和治疗设计新方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/990b9c929fbd/41598_2024_69721_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/83b8ecc24af5/41598_2024_69721_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f28c9b002006/41598_2024_69721_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/2c32d2215f88/41598_2024_69721_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/423f228361cc/41598_2024_69721_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f0bb287ec5ac/41598_2024_69721_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/0ff02c1c6e63/41598_2024_69721_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f7aa54a36ca0/41598_2024_69721_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/51996f91bdb2/41598_2024_69721_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f2166c53ebda/41598_2024_69721_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/990b9c929fbd/41598_2024_69721_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/83b8ecc24af5/41598_2024_69721_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f28c9b002006/41598_2024_69721_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/2c32d2215f88/41598_2024_69721_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/423f228361cc/41598_2024_69721_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f0bb287ec5ac/41598_2024_69721_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/0ff02c1c6e63/41598_2024_69721_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f7aa54a36ca0/41598_2024_69721_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/51996f91bdb2/41598_2024_69721_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/f2166c53ebda/41598_2024_69721_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/11379961/990b9c929fbd/41598_2024_69721_Fig10_HTML.jpg

相似文献

[1]
On discovery of novel hub genes for ER+ and TN breast cancer types through RNA seq data analyses and classification models.

Sci Rep. 2024-9-6

[2]
Integrated network analysis and machine learning approach for the identification of key genes of triple-negative breast cancer.

J Cell Biochem. 2018-10-9

[3]
Estrogen receptor 1 and progesterone receptor are distinct biomarkers and prognostic factors in estrogen receptor-positive breast cancer: Evidence from a bioinformatic analysis.

Biomed Pharmacother. 2019-11-13

[4]
Overexpressing S100A9 ameliorates NK cell dysfunction in estrogen receptor-positive breast cancer.

Cancer Immunol Immunother. 2024-5-7

[5]
Identification of differentially expressed genes between triple and non-triple-negative breast cancer using bioinformatics analysis.

Breast Cancer. 2019-6-13

[6]
Network-based approach to identify prognostic biomarkers for estrogen receptor-positive breast cancer treatment with tamoxifen.

Cancer Biol Ther. 2015

[7]
Network-based approach to identify prognosis-related genes in tamoxifen-treated patients with estrogen receptor-positive breast cancer.

Biosci Rep. 2021-9-30

[8]
Identification of Hub Genes to Regulate Breast Cancer Spinal Metastases by Bioinformatics Analyses.

Comput Math Methods Med. 2021

[9]
NRF1 motif sequence-enriched genes involved in ER/PR -ve HER2 +ve breast cancer signaling pathways.

Breast Cancer Res Treat. 2018-8-20

[10]
Identification of Key Prognostic Genes of Triple Negative Breast Cancer by LASSO-Based Machine Learning and Bioinformatics Analysis.

Genes (Basel). 2022-5-18

本文引用的文献

[1]
Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries.

CA Cancer J Clin. 2024

[2]
Combination of AURKA inhibitor and HSP90 inhibitor to treat breast cancer with AURKA overexpression and TP53 mutations.

Med Oncol. 2022-9-7

[3]
Mitochondrial fission induces immunoescape in solid tumors through decreasing MHC-I surface expression.

Nat Commun. 2022-7-6

[4]
Analysis of SEC24D Gene in Breast Cancer Based on UALCAN Database.

Open Life Sci. 2019-12-31

[5]
Breast Cancer Type Classification Using Machine Learning.

J Pers Med. 2021-1-20

[6]
From ArrayExpress to BioStudies.

Nucleic Acids Res. 2021-1-8

[7]
Bioinformatic analysis revealing mitotic spindle assembly regulated NDC80 and MAD2L1 as prognostic biomarkers in non-small cell lung cancer development.

BMC Med Genomics. 2020-8-14

[8]
Analysis of Differentially Expressed Genes and Molecular Pathways in Familial Hypercholesterolemia Involved in Atherosclerosis: A Systematic and Bioinformatics Approach.

Front Genet. 2020-7-15

[9]
A Review of the Epidemiology of Breast Cancer in Asia: Focus on Risk Factors.

Asian Pac J Cancer Prev. 2020-4-1

[10]
Overexpression of CENPF correlates with poor prognosis and tumor bone metastasis in breast cancer.

Cancer Cell Int. 2019-10-11

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索