Mirza Maziar, Bodaghifard Mohammad Ali, Darvish Fatemeh
Department of Organic Chemistry, Faculty of Chemistry, K. N. Toosi University of Technology Tehran 15418-49611 Iran
Department of Chemistry, Faculty of Science, Arak University Arak 38481-77584 Iran.
RSC Adv. 2024 Oct 15;14(44):32559-32572. doi: 10.1039/d4ra06049k. eCollection 2024 Oct 9.
Rapid industrialization, urbanization, and human activities in catchments have presented a significant global challenge in removing heavy metal contaminants from wastewater. Here, a study was conducted to synthesize a nano-magnetic dendrimer based on a trimesoyl core that can be easily separated from the environment using an external magnet (FeO@NR-TMD-G1, FeO@NR-TMD-G2). The synthesized structure was characterized using various conventional techniques such as Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), powder X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), thermogravimetric analysis (TGA), vibrating sample magnetometry (VSM), and Brunauer-Emmett-Teller surface area analysis (BET). The prepared adsorbent showed good binding ability and excellent adsorption efficiency toward Pb(ii) and Cd(ii) metal ions from aqueous media (98.5%, 93.6%). The effect of different conditions including pH, adsorbate concentration, adsorbent dosage, isotherm, kinetics, and adsorption mechanism was considered. The highest adsorption efficiency was achieved at 25 °C and pH 4 using 0.08 g of FeO@NR-TMD-G1, within 25 minutes for Pb(ii) and 120 minutes for Cd(ii), respectively. Batch adsorption experiments revealed that FeO@NR-TMD-G1 was more effective in removing Pb(ii) and Cd(ii) compared to FeO@NR-TMD-G2, with maximum capacities of 130.2 mg g and 57 mg g, respectively. The adsorption process followed the Langmuir isotherm with a high correlation coefficient ( = 0.9952, 0.9817) and non-linear pseudo-second-order kinetic model. Density functional theory (DFT) analysis indicated that the adsorbent transferred electrons to Pb(ii) and Cd(ii), forming stable chelates on the nanostructure surface. The heavy metal ions could be adsorbed by coordination to the heteroatoms of the nanostructure and also by electrostatic interactions. The recycled hybrid nanomaterial was dried and applied to different adsorption-desorption tests and the desorption efficiency was found to be 98%. So, the newly synthesized dendritic magnetic nanostructure demonstrated significant potential in efficient removal of metal ions from water and wastewater, highlighting its importance in addressing the global challenge of heavy metal contamination.
流域内快速的工业化、城市化以及人类活动给从废水中去除重金属污染物带来了重大的全球挑战。在此,开展了一项研究以合成一种基于均苯三甲酰核心的纳米磁性树枝状聚合物,该聚合物可使用外部磁铁轻松地与环境分离(FeO@NR-TMD-G1、FeO@NR-TMD-G2)。使用各种传统技术对合成结构进行了表征,如傅里叶变换红外光谱(FT-IR)、扫描电子显微镜(SEM)、粉末X射线衍射(XRD)、能量色散X射线分析(EDX)、热重分析(TGA)、振动样品磁强计(VSM)以及布鲁诺尔-埃米特-泰勒表面积分析(BET)。所制备的吸附剂对水介质中的Pb(ii)和Cd(ii)金属离子表现出良好的结合能力和出色的吸附效率(分别为98.5%、93.6%)。考虑了不同条件的影响,包括pH值、吸附质浓度、吸附剂用量、等温线、动力学以及吸附机制。在25℃和pH值为4的条件下,使用0.08 g的FeO@NR-TMD-G1分别在25分钟内对Pb(ii)和120分钟内对Cd(ii)实现了最高吸附效率。批次吸附实验表明,与FeO@NR-TMD-G2相比,FeO@NR-TMD-G1在去除Pb(ii)和Cd(ii)方面更有效,最大吸附容量分别为130. mg/g和57 mg/g。吸附过程遵循朗缪尔等温线,相关系数较高(分别为0.9952、0.9817)以及非线性伪二级动力学模型。密度泛函理论(DFT)分析表明,吸附剂将电子转移给Pb(ii)和Cd(ii),在纳米结构表面形成稳定的螯合物。重金属离子可通过与纳米结构的杂原子配位以及静电相互作用进行吸附。回收的杂化纳米材料经干燥后应用于不同的吸附-解吸测试,发现解吸效率为98%。因此,新合成的树枝状磁性纳米结构在从水和废水中高效去除金属离子方面显示出巨大潜力,凸显了其在应对重金属污染这一全球挑战中的重要性。