Zhou Can, Wang Haiyan, Zhu Xiaobin, Li Yuqiu, Zhang Bo, Tadege Million, Wu Shihao, Qi Zhaoming, Xia Zhengjun
College of Agriculture, Northeast Agricultural University, Harbin 150030, China.
State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China.
Int J Mol Sci. 2025 Jun 30;26(13):6323. doi: 10.3390/ijms26136323.
The Fabaceae family, the third-largest among flowering plants, is nutritionally vital, providing rich sources of protein, dietary fiber, vitamins, and minerals. Leguminous plants, such as soybeans, peas, and chickpeas, typically contain two to three times more protein than cereals like wheat and rice, with low fat content (primarily unsaturated fats) and no cholesterol, making them essential for cardiovascular health and blood sugar management. Since the release of the soybean genome in 2010, genomic research in Fabaceae has advanced dramatically. High-quality reference genomes have been assembled for key species, including soybeans (), common beans (), chickpeas (), and model legumes like and , leveraging long-read sequencing, single-cell technologies, and improved assembly algorithms. These advancements have enabled telomere-to-telomere (T2T) assemblies, pan-genome constructions, and the identification of structural variants (SVs) and presence/absence variations (PAVs), enriching our understanding of genetic diversity and domestication history. Functional genomic tools, such as CRISPR-Cas9 gene editing, mutagenesis, and high-throughput omics (transcriptomics, metabolomics), have elucidated regulatory networks controlling critical traits like photoperiod sensitivity (e.g., and genes in soybeans), seed development ( for oil/protein transport), nitrogen fixation efficiency, and stress resilience (e.g., for rust resistance). Genome-wide association studies (GWAS) and comparative genomics have further linked genetic variants to agronomic traits, such as pod size in peanuts () and flowering time in common beans (). This review synthesizes recent breakthroughs in legume genomics, highlighting the integration of multi-omic approaches to accelerate gene cloning and functional confirmation of the genes cloned.
豆科是开花植物中的第三大科,在营养方面至关重要,能提供丰富的蛋白质、膳食纤维、维生素和矿物质来源。豆科植物,如大豆、豌豆和鹰嘴豆,其蛋白质含量通常比小麦和水稻等谷类多两到三倍,脂肪含量低(主要是不饱和脂肪)且不含胆固醇,对心血管健康和血糖管理至关重要。自2010年大豆基因组发布以来,豆科的基因组研究取得了巨大进展。已为包括大豆()、菜豆()、鹰嘴豆()以及诸如和等模式豆科植物在内的关键物种组装了高质量的参考基因组,利用了长读长测序、单细胞技术和改进的组装算法。这些进展使得端粒到端粒(T2T)组装、泛基因组构建以及结构变异(SV)和存在/缺失变异(PAV)的识别成为可能,丰富了我们对遗传多样性和驯化历史的理解。功能基因组工具,如CRISPR - Cas9基因编辑、诱变和高通量组学(转录组学、代谢组学),阐明了控制关键性状的调控网络,如光周期敏感性(例如大豆中的和基因)、种子发育(用于油/蛋白质运输)、固氮效率和胁迫抗性(例如用于抗锈病)。全基因组关联研究(GWAS)和比较基因组学进一步将遗传变异与农艺性状联系起来,如花生的荚大小()和菜豆的开花时间()。本综述总结了豆科基因组学的最新突破,强调了多组学方法的整合以加速基因克隆和对克隆基因的功能确认。