Suppr超能文献

裸盖菇素生物合成中的第二次甲基化是由一个延伸至甲基转移酶活性位点周围二级球域的氢键网络促成的。

The Second Methylation in Psilocybin Biosynthesis Is Enabled by a Hydrogen Bonding Network Extending into the Secondary Sphere Surrounding the Methyltransferase Active Site.

作者信息

Hudspeth Jesse, Rogge Kai, Wagner Tobias, Müll Maximilian, Hoffmeister Dirk, Rupp Bernhard, Werten Sebastiaan

机构信息

Department of Chemistry, Colorado School of Mines, 1500 Illinois Street, Golden, CO, 80401, USA.

Institute of Pharmacy, Friedrich-Schiller-Universität, Beutenbergstrasse 11a, Jena, 07745, Germany.

出版信息

Chembiochem. 2024 Dec 2;25(23):e202400497. doi: 10.1002/cbic.202400497. Epub 2024 Nov 9.

Abstract

The Psilocybe cubensis SAM-dependent methyltransferase, PsiM, catalyzes the last step in the biosynthesis of psilocybin. Likely evolved from monomethylating RNA methyltransferases, PsiM acquired a key amino acid exchange in the secondary sphere of the active site, M247 N, which is responsible for its capacity to dimethylate. Two variants, PsiM and PsiM, were generated to further examine the role of Asn247 for mono- and dimethylation in PsiM. Herein, we present the kinetic profiles of both variants and crystal structures at resolutions between 0.9 and 1.0 Å. Each variant was crystallized as a ternary complex with the non-methylated acceptor substrate, norbaeocystin and S-adenosyl-l-homocysteine, and in a second complex with the cofactor analog, sinefungin, and the monomethylated substrate, baeocystin. Consistent with the inability of the variants to catalyze a second methyl transfer, these structures reveal catalytically non-productive conformations and a high level of disorder of the methylamine group of baeocystin. Additionally, both variants exhibit destabilization in the β5-β7 sheets and a conserved β-turn of the core Rossmann fold, causing 20-fold reduced substrate binding and 2-fold lower catalytic efficiency even with norbaeocystin. Our structural and kinetic analyses of the variants suggest that Asn247 is essential to allow enough space in the active site for multiple methylations while also participating in a network of hydrogen bonds that stabilizes secondary structure elements in the immediate vicinity of the active site for optimal methylation of norbaeocystin.

摘要

古巴裸盖菇素依赖S-腺苷甲硫氨酸的甲基转移酶PsiM催化了裸盖菇素生物合成的最后一步。PsiM可能是从单甲基化RNA甲基转移酶进化而来,在活性位点的二级结构域获得了关键的氨基酸交换M247N,这赋予了它进行二甲基化的能力。为了进一步研究Asn247在PsiM单甲基化和二甲基化中的作用,我们构建了两个变体PsiM和PsiM。在此,我们展示了这两个变体的动力学曲线以及分辨率在0.9至1.0 Å之间的晶体结构。每个变体都与未甲基化的受体底物降杯伞素和S-腺苷-L-高半胱氨酸形成三元复合物结晶,还与辅因子类似物杀稻瘟菌素和单甲基化底物杯伞素形成了另一种复合物。这些结构显示,由于变体无法催化第二次甲基转移,因此呈现出催化无活性的构象,并且杯伞素的甲胺基团高度无序。此外,两个变体在β5-β7片层和核心罗斯曼折叠的保守β转角处都表现出不稳定,导致底物结合能力降低20倍,即使对于降杯伞素,催化效率也降低了2倍。我们对变体的结构和动力学分析表明,Asn247对于在活性位点提供足够空间进行多次甲基化至关重要,同时它还参与氢键网络,稳定活性位点附近的二级结构元件,以实现降杯伞素的最佳甲基化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验