Suppr超能文献

大肠杆菌中 CadC 介导的酸应答依赖蛋白水解切割激活的分子机制。

Molecular mechanism of proteolytic cleavage-dependent activation of CadC-mediated response to acid in E. coli.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, 72 Binhai Road, Qingdao, China.

Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwuweiqi Road, jinan, China.

出版信息

Commun Biol. 2024 Oct 16;7(1):1335. doi: 10.1038/s42003-024-06931-x.

Abstract

Colonizing in the gastrointestinal tract, Escherichia coli confronts diverse acidic challenges and evolves intricate acid resistance strategies for its survival. The lysine-mediated decarboxylation (Cad) system, featuring lysine decarboxylase CadA, lysine/cadaverine antiporter CadB, and transcriptional activator CadC, plays a crucial role in E. coli's adaptation to moderate acidic stress. While the activation of the one-component system CadC and subsequent upregulation of cadBA operon in response to acid and lysine presence have been proposed, the molecular mechanisms governing the transition of CadC from an inactive to an active state remain elusive. Under neutral conditions, CadC is inhibited by forming a complex with lysine-specific permease LysP, stabilized in this inactive state by a disulfide bond. Our study unveils that, in an acidic environment, the disulfide bond in CadC is reduced by the disulfide bond isomerase DsbC, exposing R184 to periplasmic proteases, namely DegQ and DegP. Cleavage at R184 by DegQ and DegP generates an active N-terminal DNA-binding domain of CadC, which binds to the cadBA promoter, resulting in the upregulated transcription of the cadA and cadB genes. Upon activation, CadA decarboxylates lysine, producing cadaverine, subsequently transported extracellularly by CadB. We propose that accumulating cadaverine gradually binds to the CadC pH-sensing domain, preventing cleavage and activation of CadC as a feedback mechanism. The identification of DegP, DegQ, and DsbC completes a comprehensive roadmap for the activation and regulation of the Cad system in response to moderate acidic stress in E. coli.

摘要

在胃肠道中定植,大肠杆菌面临着多样的酸性挑战,并进化出复杂的耐酸策略以保证其生存。赖氨酸介导的脱羧(Cad)系统,由赖氨酸脱羧酶 CadA、赖氨酸/尸胺反向转运蛋白 CadB 和转录激活因子 CadC 组成,在大肠杆菌适应中度酸性应激中发挥着关键作用。虽然 CadC 作为单组分系统的激活以及在酸性和赖氨酸存在时 cadBA 操纵子的上调已经被提出,但 CadC 从非活性状态向活性状态转变的分子机制仍然难以捉摸。在中性条件下,CadC 被与赖氨酸特异性渗透酶 LysP 形成的复合物所抑制,通过二硫键稳定在这种非活性状态。我们的研究揭示,在酸性环境中,CadC 中的二硫键被二硫键异构酶 DsbC 还原,使 R184 暴露于周质蛋白酶 DegQ 和 DegP 中。DegQ 和 DegP 在 R184 处的切割产生 CadC 的活性 N 端 DNA 结合结构域,该结构域与 cadBA 启动子结合,导致 cadA 和 cadB 基因的转录上调。CadA 脱羧赖氨酸产生尸胺,随后由 CadB 运出细胞外。我们提出,积累的尸胺逐渐与 CadC 的 pH 感应结构域结合,阻止 CadC 的切割和激活,作为一种反馈机制。DegP、DegQ 和 DsbC 的鉴定完成了大肠杆菌中 Cad 系统在应对中度酸性应激时的激活和调节的全面路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/64ec/11484849/da1f7b660f22/42003_2024_6931_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验