文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Comparison of emulsion and spray methods for fabrication of rapamycin-loaded acetalated dextran microparticles.

作者信息

Ehrenzeller Stephen A, Lukesh Nicole Rose, Stiepel Rebeca T, Middleton Denzel D, Nuzzolo Steven M, Tate Aliyah J, Batty Cole J, Bachelder Eric M, Ainslie Kristy M

机构信息

Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill Chapel Hill North Carolina USA

Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University Chapel Hill North Carolina USA.

出版信息

RSC Pharm. 2024 Jul 8;1(4):727-741. doi: 10.1039/d4pm00054d. eCollection 2024 Oct 15.


DOI:10.1039/d4pm00054d
PMID:39415944
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11474811/
Abstract

Rapamycin (rapa), an immunosuppressive medication, has demonstrated considerable effectiveness in reducing organ transplant rejection and treating select autoimmune diseases. However, the standard oral administration of rapa results in poor bioavailability, broad biodistribution, and harmful off-target effects, necessitating improved drug delivery formulations. Polymeric microparticles (MPs) are one such solution and have demonstrated promise in pre-clinical studies to improve the therapeutic efficacy of rapa. Nevertheless, MP formulations are highly diverse, and fabrication method selection is a critical consideration in formulation design. Herein, we compared common fabrication processes for the development of rapa-loaded MPs. Using the biopolymer acetalated dextran (Ace-DEX), rapa-loaded MPs were fabricated by both emulsion (homogenization and sonication) and spray (electrospray and spray drying) methods, and resultant MPs were characterized for size, morphology, surface charge, and drug release kinetics. MPs were then screened in LPS-stimulated macrophages to gauge immunosuppressive efficacy relative to soluble drug. We determined that homogenized MPs possessed the most optimal combination of sizing, tunable drug release kinetics, and immunosuppressive efficacy, and we subsequently demonstrated that these characteristics were maintained across a range of potential rapa loadings. Further, we performed trafficking studies to evaluate depot kinetics and cellular uptake at the injection site after subcutaneous injection of homogenized MPs. We observed preferential MP uptake by dendritic cells at the depot, highlighting the potential for MPs to direct more targeted drug delivery. Our results emphasize the significance of fabrication method in modulating the efficacy of MP systems and inform improved formulation design for the delivery of rapa.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/7827d1182909/d4pm00054d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/884bf88784ee/d4pm00054d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/3beba94f5c01/d4pm00054d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/0fb551af649a/d4pm00054d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/733fa67f221f/d4pm00054d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/1484222b4f39/d4pm00054d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/7827d1182909/d4pm00054d-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/884bf88784ee/d4pm00054d-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/3beba94f5c01/d4pm00054d-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/0fb551af649a/d4pm00054d-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/733fa67f221f/d4pm00054d-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/1484222b4f39/d4pm00054d-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f639/11474811/7827d1182909/d4pm00054d-f6.jpg

相似文献

[1]
Comparison of emulsion and spray methods for fabrication of rapamycin-loaded acetalated dextran microparticles.

RSC Pharm. 2024-7-8

[2]
In Vivo and Cellular Trafficking of Acetalated Dextran Microparticles for Delivery of a Host-Directed Therapy for Salmonella enterica Serovar Typhi Infection.

Mol Pharm. 2018-10-17

[3]
Comparative study of acetalated-dextran microparticle fabrication methods for a clinically translatable subunit-based influenza vaccine.

Int J Pharm. 2024-3-5

[4]
Optimization of rapamycin-loaded acetalated dextran microparticles for immunosuppression.

Int J Pharm. 2011-10-21

[5]
Acetalated Dextran Microparticles for Codelivery of STING and TLR7/8 Agonists.

Mol Pharm. 2018-10-15

[6]
In vivo evaluation of solid lipid microparticles and hybrid polymer-lipid microparticles for sustained delivery of leuprolide.

Eur J Pharm Biopharm. 2019-7-9

[7]
Degradation of acetalated dextran can be broadly tuned based on cyclic acetal coverage and molecular weight.

Int J Pharm. 2016-8-16

[8]
Development, characterization and in vitro evaluation of biodegradable rhein-loaded microparticles for treatment of osteoarthritis.

Eur J Pharm Sci. 2017-1-1

[9]
Delivery of small molecule mast cell activators for West Nile Virus vaccination using acetalated dextran microparticles.

Int J Pharm. 2023-3-5

[10]
Prevention of Type 1 Diabetes with Acetalated Dextran Microparticles Containing Rapamycin and Pancreatic Peptide P31.

Adv Healthc Mater. 2018-7-26

引用本文的文献

[1]
Controlled Release of Poly(U) via Acetalated Dextran Microparticles for Enhanced Vaccine Adjuvant Delivery.

bioRxiv. 2025-7-21

本文引用的文献

[1]
Rapamycin nanoparticles increase the therapeutic window of engineered interleukin-2 and drive expansion of antigen-specific regulatory T cells for protection against autoimmune disease.

J Autoimmun. 2023-11

[2]
Humoral Response to the Acetalated Dextran M2e Vaccine is Enhanced by Antigen Surface Conjugation.

Bioconjug Chem. 2023-8-16

[3]
Micro and nanotechnologies: The little formulations that could.

Bioeng Transl Med. 2022-10-18

[4]
A predictive mechanistic model of drug release from surface eroding polymeric nanoparticles.

J Control Release. 2022-11

[5]
Multiplexed electrospray enables high throughput production of cGAMP microparticles to serve as an adjuvant for a broadly acting influenza vaccine.

Int J Pharm. 2022-6-25

[6]
Metabolic and immunomodulatory control of type 1 diabetes via orally delivered bile-acid-polymer nanocarriers of insulin or rapamycin.

Nat Biomed Eng. 2021-9

[7]
Considerations for Size, Surface Charge, Polymer Degradation, Co-Delivery, and Manufacturability in the Development of Polymeric Particle Vaccines for Infectious Diseases.

Adv Nanobiomed Res. 2021-3

[8]
Modulation of Immune Responses by Particle Size and Shape.

Front Immunol. 2021-2-12

[9]
Polymeric nanoparticles containing rapamycin and autoantigen induce antigen-specific immunological tolerance for preventing vitiligo in mice.

Hum Vaccin Immunother. 2021-7-3

[10]
An Overview on Spray-Drying of Protein-Loaded Polymeric Nanoparticles for Dry Powder Inhalation.

Pharmaceutics. 2020-10-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索