College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China.
Biomacromolecules. 2024 Nov 11;25(11):6967-6986. doi: 10.1021/acs.biomac.4c00971. Epub 2024 Oct 17.
Supramolecular peptide hydrogels (SPHs) consist of peptides containing hydrogelators and functional epitopes, which can first self-assemble into nanofibers and then physically entangle together to form dynamic three-dimensional networks. Their porous structures, excellent bioactivity, and high dynamicity, similar to an extracellular matrix (ECM), have great potential in artificial ECM. The properties of the hydrogel are largely dependent on peptides. The noncovalent interactions among hydrogelators drive the formation of assemblies and further transition into hydrogels, while bioactive epitopes modulate cell-cell and cell-ECM interactions. Therefore, SPHs can support cell growth, making them ideal biomaterials for ECM mimics. This Review outlines the classical molecular design of SPHs from hydrogelators to functional epitopes and summarizes the recent advancements of SPHs as artificial ECMs in nervous system repair, wound healing, bone and cartilage regeneration, and organoid culture. This emerging SPH platform could provide an alternative strategy for developing more effective biomaterials for tissue engineering.
超分子肽水凝胶(SPH)由含有水凝胶因子和功能表位的肽组成,它可以首先自组装成纳米纤维,然后通过物理缠结形成动态的三维网络。它们的多孔结构、优异的生物活性和高动态性与细胞外基质(ECM)相似,在人工 ECM 中有很大的应用潜力。水凝胶的性质在很大程度上取决于肽。水凝胶因子之间的非共价相互作用驱动组装的形成,并进一步转化为水凝胶,而生物活性表位调节细胞-细胞和细胞-ECM 的相互作用。因此,SPH 可以支持细胞生长,使其成为 ECM 模拟物的理想生物材料。本综述概述了从水凝胶因子到功能表位的 SPH 的经典分子设计,并总结了 SPH 作为神经系统修复、伤口愈合、骨和软骨再生以及类器官培养等人工 ECM 的最新进展。这一新兴的 SPH 平台为开发更有效的组织工程生物材料提供了一种替代策略。