Komen Paratee, Suthirakun Suwit, Plucksacholatarn Aunyamanee, Kuboon Sanchai, Faungnawakij Kajornsak, Junkaew Anchalee
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand; Research Network NANOTEC - SUT on Advanced Nanomaterials and Characterization, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand.
J Colloid Interface Sci. 2025 Feb;679(Pt A):1026-1035. doi: 10.1016/j.jcis.2024.10.045. Epub 2024 Oct 11.
Producing value-added chemicals and fuels from methane (CH) under mild conditions efficiently utilizes this cheap and abundant feedstock, promoting economic growth, energy security, and environmental sustainability. However, the first CH bond activation is a significant challenge and requires high energy. Efficient catalysts have been sought for utilizing CH at low temperatures including emerging single-atom catalysts (SACs). In this work, we screened fourteen transition metals (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ru, Rh, Pd, Pt) doped at a single oxygen vacancy in MoTiCO (TM-MoTiCO SACs) for methane activation using density functional theory (DFT) calculations. Our results reveal that methane adsorption is thermodynamically stable on all simulated TM-MoTiCO SACs, with the adsorption energies (E) ranging from -0.92 to -0.40 eV. For the CH activation process, Ru-SAC exhibits the lowest activation barrier (E) of 0.22 eV. In summary, Ru-, Rh-, Co-, V-, Cr-, Ti-, and Pt-SACs demonstrate promising catalytic properties for methane activation, with E values below 1.0 eV and an exothermic nature. Our findings pave the way for the design and development of novel single-atom catalysts in MXene materials, applicable not only for methane activation but also for other alkane dehydrogenation processes.
在温和条件下由甲烷(CH₄)生产增值化学品和燃料能够有效利用这种廉价且丰富的原料,促进经济增长、能源安全和环境可持续性。然而,首个C-H键的活化是一项重大挑战,需要高能量。人们一直在寻找能够在低温下利用CH₄的高效催化剂,包括新兴的单原子催化剂(SACs)。在这项工作中,我们使用密度泛函理论(DFT)计算筛选了掺杂在MoTiCO中的单个氧空位处的十四种过渡金属(TM = Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ru、Rh、Pd、Pt)用于甲烷活化(TM-MoTiCO SACs)。我们的结果表明,甲烷在所有模拟的TM-MoTiCO SACs上的吸附在热力学上是稳定的,吸附能(Eₐ)范围为-0.92至-0.40 eV。对于CH₄活化过程,Ru-SAC表现出最低的活化能垒(Eₐ)为0.22 eV。总之,Ru-、Rh-、Co-、V-、Cr-、Ti-和Pt-SACs表现出用于甲烷活化的有前景的催化性能,Eₐ值低于1.0 eV且具有放热性质。我们的发现为MXene材料中新型单原子催化剂的设计和开发铺平了道路,不仅适用于甲烷活化,也适用于其他烷烃脱氢过程。