Suppr超能文献

线粒体天冬氨酸/谷氨酸载体 citrin 结构域在细胞器定位和底物转运中的不同作用。

Distinct roles for the domains of the mitochondrial aspartate/glutamate carrier citrin in organellar localization and substrate transport.

机构信息

Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.

Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY United Kingdom.

出版信息

Mol Metab. 2024 Dec;90:102047. doi: 10.1016/j.molmet.2024.102047. Epub 2024 Oct 16.

Abstract

OBJECTIVE

Citrin, the mitochondrial aspartate/glutamate carrier isoform 2 (AGC2), is structurally and mechanistically the most complex SLC25 family member, because it consists of three domains and forms a homo-dimer. Each protomer has an N-terminal calcium-binding domain with EF-hands, followed by a substrate-transporting carrier domain and a C-terminal domain with an amphipathic helix. The absence or dysfunction of citrin leads to citrin deficiency, a highly prevalent pan-ethnic mitochondrial disease. Here, we aim to understand the role of different citrin domains and how they contribute to pathogenic mechanisms in citrin deficiency.

METHODS

We have employed structural modeling and functional reconstitution of purified proteins in proteoliposomes to assess the transport activity and calcium regulation of wild-type citrin and pathogenic variants associated with citrin deficiency. We have also developed a double knockout of citrin and aralar (AGC1), the two paralogs of the mitochondrial aspartate/glutamate carrier, in HAP1 cells to perform mitochondrial imaging and to investigate mitochondrial localisation.

RESULTS

Using 33 pathogenic variants of citrin we clarify determinants of subcellular localization and transport mechanism. We identify crucial elements of the carrier domain that are required for transport, including those involved in substrate binding, network formation and dynamics. We show that the N-terminal domain is not involved in calcium regulation of transport, as previously thought, but when mutated causes a mitochondrial import defect.

CONCLUSIONS

Our work introduces a new role for the N-terminal domain of citrin and demonstrates that dysfunction of the different domains contributes to distinct pathogenic mechanisms in citrin deficiency.

摘要

目的

柠檬酸合成酶,即线粒体天冬氨酸/谷氨酸载体同工酶 2(AGC2),在结构和机制上是最复杂的 SLC25 家族成员,因为它由三个结构域组成,并形成同源二聚体。每个单体都有一个具有 EF 手的 N 端钙结合结构域,随后是一个底物转运载体结构域和一个具有两性螺旋的 C 端结构域。柠檬酸合成酶的缺失或功能障碍导致柠檬酸合成酶缺乏症,这是一种普遍存在的泛种族线粒体疾病。在这里,我们旨在了解不同柠檬酸合成酶结构域的作用以及它们如何导致柠檬酸合成酶缺乏症的发病机制。

方法

我们采用了结构建模和纯化蛋白在脂质体中的功能重建,以评估野生型柠檬酸合成酶和与柠檬酸合成酶缺乏症相关的致病变体的转运活性和钙调节。我们还在 HAP1 细胞中开发了柠檬酸合成酶和 aralar(AGC1)的双敲除,以进行线粒体成像和研究线粒体定位。

结果

使用 33 种柠檬酸合成酶的致病变体,我们阐明了亚细胞定位和转运机制的决定因素。我们确定了载体结构域中对转运至关重要的元素,包括那些涉及底物结合、网络形成和动力学的元素。我们表明,以前认为 N 端结构域不参与转运的钙调节,但当发生突变时会导致线粒体输入缺陷。

结论

我们的工作介绍了柠檬酸合成酶 N 端结构域的新作用,并证明不同结构域的功能障碍导致柠檬酸合成酶缺乏症的不同发病机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/53f9/11539162/fee7e0b78e64/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验