Technische Universität Braunschweig, Institut für Mikrotechnik, Alte Salzdahlumer Str. 203, 38124, Braunschweig, Germany.
Zentrum für Pharmaverfahrenstechnik (PVZ), Technischen Universität Braunschweig, Franz-Liszt-Str. 35a, 38106, Braunschweig, Germany.
Sci Rep. 2024 Oct 17;14(1):24356. doi: 10.1038/s41598-024-73721-0.
Pharmaceutical formulations are increasingly based on drug nanoparticles or carrier nanoparticles encapsulating drugs or mRNA molecules. Sizes and monodispersity of the nanoparticles regulate bioavailability, pharmacokinetics and pharmacology. Microfluidic mixers promise unique conditions for their continuous preparation. A novel microfluidic antisolvent precipitation device was realized by two-photon-polymerization with a mixing channel in which the organic phase formed a sheet with a homogeneous thickness of down to 7 μm completely wrapped in the aqueous phase. Homogeneous diffusion through the sheet accelerates mixing. Optical access was implemented to allow in-situ dynamic light scattering. By centering the thin sheet in the microchannel cross-section, two important requirements are met. On the one hand, the organic phase never reaches the channel walls, avoiding fouling and unstable flow conditions. On the other hand, in the sheet positioned at the maximum of the parabolic flow profile the nanoparticle velocities are homogenized which enables flow-compensated Dynamic Light Scattering (flowDLS). These unique features allowed in-situ particle size determination for the first time. Monitoring of lipid nanoparticle precipitation was demonstrated for different rates of solvent and antisolvent flows. This breakthrough innovation will not only enable feedback control of nanoparticle production but also will provide new insights into the dynamics of nanoparticle precipitation.
药物纳米颗粒或载药纳米颗粒越来越多地被用于药物制剂,这些纳米颗粒可以包裹药物或 mRNA 分子。纳米颗粒的大小和单分散性可以调节其生物利用度、药代动力学和药理学性质。微流控混合器为其连续制备提供了独特的条件。本文通过双光子聚合实现了一种新型的微流控抗溶剂沉淀装置,在混合通道中形成了一个有机相薄片,其厚度均匀,低至 7μm,并完全被水相包裹。有机相在薄片中的均匀扩散可以加速混合。通过在微通道横截面中心定位薄的有机相薄片,可以满足两个重要要求。一方面,有机相永远不会到达通道壁,从而避免了堵塞和不稳定的流动条件。另一方面,在抛物线流型的最大值处,纳米颗粒的速度得到了均匀化,从而实现了流动补偿动态光散射(flowDLS)。这些独特的特性使得首次能够进行原位粒径测定。本文还展示了不同溶剂和反溶剂流速下的脂质纳米颗粒沉淀监测。这一突破性创新不仅将能够实现纳米颗粒生产的反馈控制,还将为纳米颗粒沉淀动力学提供新的见解。