Suppr超能文献

连续多点干预的因果推断。

Causal Inference for Continuous Multiple Time Point Interventions.

机构信息

Department of Statistics, Ludwig-Maximilians University, Munich, Germany.

Centre for Infectious Disease Epidemiology and Research, University of Cape Town, Cape Town, South Africa.

出版信息

Stat Med. 2024 Dec 10;43(28):5380-5400. doi: 10.1002/sim.10246. Epub 2024 Oct 17.

Abstract

There are limited options to estimate the treatment effects of variables which are continuous and measured at multiple time points, particularly if the true dose-response curve should be estimated as closely as possible. However, these situations may be of relevance: in pharmacology, one may be interested in how outcomes of people living with-and treated for-HIV, such as viral failure, would vary for time-varying interventions such as different drug concentration trajectories. A challenge for doing causal inference with continuous interventions is that the positivity assumption is typically violated. To address positivity violations, we develop projection functions, which reweigh and redefine the estimand of interest based on functions of the conditional support for the respective interventions. With these functions, we obtain the desired dose-response curve in areas of enough support, and otherwise a meaningful estimand that does not require the positivity assumption. We develop -computation type plug-in estimators for this case. Those are contrasted with g-computation estimators which are applied to continuous interventions without specifically addressing positivity violations, which we propose to be presented with diagnostics. The ideas are illustrated with longitudinal data from HIV positive children treated with an efavirenz-based regimen as part of the CHAPAS-3 trial, which enrolled children years in Zambia/Uganda. Simulations show in which situations a standard g-computation approach is appropriate, and in which it leads to bias and how the proposed weighted estimation approach then recovers the alternative estimand of interest.

摘要

对于那些需要尽可能精确地估计真实剂量-反应曲线的连续且在多个时间点测量的变量,其治疗效果的估计方法有限。然而,以下情况可能具有相关性:在药理学中,人们可能会关注患有 HIV 并接受治疗的人群(如病毒失败)的结果会如何随时间变化的干预措施(如不同的药物浓度轨迹)而变化。对于连续干预措施进行因果推断的一个挑战是,正性假设通常会被违反。为了解决正性违反问题,我们开发了投影函数,这些函数基于各自干预措施的条件支持的函数,对感兴趣的估计量进行重新加权和重新定义。通过这些函数,我们在有足够支持的区域中获得所需的剂量-反应曲线,否则,获得一个不需要正性假设的有意义的估计量。我们为此开发了 -计算类型的插补估计量。与 g 计算估计量形成对比,后者应用于没有专门解决正性违反问题的连续干预措施,我们建议对此类估计量使用诊断工具。这些想法通过来自 HIV 阳性儿童的纵向数据进行说明,这些儿童在赞比亚/乌干达接受基于依非韦仑的方案治疗,是 CHAPAS-3 试验的一部分。模拟结果表明,在哪些情况下标准的 g 计算方法是合适的,以及在哪些情况下会导致偏差,以及拟议的加权估计方法如何恢复替代的感兴趣的估计量。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ddf1/11586917/b6c51a05b36a/SIM-43-5380-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验