Suppr超能文献

用于眼底照片中脉络膜痣与小黑色素瘤鉴别的深度学习算法的开发与验证

Development and Validation of a Deep Learning Algorithm for Differentiation of Choroidal Nevi from Small Melanoma in Fundus Photographs.

作者信息

Sabazade Shiva, Lumia Michalski Marco A, Bartoszek Jakub, Fili Maria, Holmström Mats, Stålhammar Gustav

机构信息

Division of Eye and Vision, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.

Ocular Oncology Service, St. Erik Eye Hospital, Stockholm, Sweden.

出版信息

Ophthalmol Sci. 2024 Aug 30;5(1):100613. doi: 10.1016/j.xops.2024.100613. eCollection 2025 Jan-Feb.

Abstract

PURPOSE

To develop and validate a deep learning algorithm capable of differentiating small choroidal melanomas from nevi.

DESIGN

Retrospective multicenter cohort study.

PARTICIPANTS

A total of 802 images from 688 patients diagnosed with choroidal nevi or melanoma.

METHODS

Wide field and standard field fundus photographs were collected from patients diagnosed with choroidal nevi or melanoma by ocular oncologists during clinical examinations. A lesion was classified as a nevus if it was followed for at least 5 years without being rediagnosed as melanoma. A neural network optimized for image classification was trained and validated on cohorts of 495 and 168 images and subsequently tested on independent sets of 86 and 53 images.

MAIN OUTCOME MEASURES

Area under the curve (AUC) in receiver operating characteristic analysis for differentiating small choroidal melanomas from nevi.

RESULTS

The algorithm achieved an AUC of 0.88 in both test cohorts, outperforming ophthalmologists using the Mushroom shape, Orange pigment, Large size, Enlargement, and Subretinal fluid (AUC 0.77) and To Find Small Ocular Melanoma Using Helpful Hints Daily (AUC 0.67) risk factors (DeLong's test,  < 0.001). The algorithm performed equally well for wide field and standard field photos (AUC 0.89 for both when analyzed separately). Using an optimal operating point of 0.63 (on a scale from 0.00 to 1.00) determined from the training and validation datasets, the algorithm achieved 100% sensitivity and 74% specificity in the first test cohort (F-score 0.72), and 80% sensitivity and 81% specificity in the second (F-score 0.71), which consisted of images from external clinics nationwide. It outperformed 12 ophthalmologists in sensitivity (Mann-Whitney ,  = 0.006) but not specificity ( = 0.54). The algorithm showed higher sensitivity than both resident and consultant ophthalmologists (Dunn's test,  = 0.04 and  = 0.006, respectively) but not ocular oncologists ( > 0.99, all values Bonferroni corrected).

CONCLUSIONS

This study develops and validates a deep learning algorithm for differentiating small choroidal melanomas from nevi, matching or surpassing the discriminatory performance of experienced human ophthalmologists. Further research will aim to validate its utility in clinical settings.

FINANCIAL DISCLOSURES

Financial DisclosuresProprietary or commercial disclosure may be found in the Footnotes and Disclosures at the end of this article.

摘要

目的

开发并验证一种能够区分小脉络膜黑色素瘤和痣的深度学习算法。

设计

回顾性多中心队列研究。

参与者

共纳入688例被诊断为脉络膜痣或黑色素瘤患者的802张图像。

方法

眼科肿瘤学家在临床检查期间,收集了被诊断为脉络膜痣或黑色素瘤患者的广角和标准视野眼底照片。如果一个病变被随访至少5年且未被重新诊断为黑色素瘤,则分类为痣。针对图像分类进行优化的神经网络在495张和168张图像的队列上进行训练和验证,随后在86张和53张独立图像集上进行测试。

主要观察指标

在区分小脉络膜黑色素瘤和痣的受试者操作特征分析中的曲线下面积(AUC)。

结果

该算法在两个测试队列中的AUC均达到0.88,优于使用蘑菇形状、橙色色素、大尺寸、增大和视网膜下液(AUC 0.77)以及每日使用有用提示查找小眼部黑色素瘤(AUC 0.67)风险因素的眼科医生(德龙检验,<0.001)。该算法在广角和标准视野照片上的表现同样出色(分别分析时两者的AUC均为0.89)。使用从训练和验证数据集中确定的0.63(范围为0.00至1.00)的最佳操作点,该算法在第一个测试队列中实现了100%的灵敏度和74%的特异度(F值为0.72),在第二个队列中实现了80%的灵敏度和81%的特异度(F值为0.71),第二个队列由来自全国外部诊所的图像组成。其灵敏度优于12名眼科医生(曼-惠特尼检验,=0.006),但特异度未超过(=0.54)。该算法显示出比住院眼科医生和会诊眼科医生更高的灵敏度(邓恩检验,分别为=0.04和=0.006),但不比眼科肿瘤学家高(>0.99,所有值均经邦费罗尼校正)。

结论

本研究开发并验证了一种用于区分小脉络膜黑色素瘤和痣的深度学习算法,其判别性能与经验丰富的眼科医生相当或更优。进一步的研究旨在验证其在临床环境中的实用性。

财务披露

财务披露 本文末尾的脚注和披露中可能会找到专有或商业披露信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0407/11483474/9493bc6346c2/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验