Suppr超能文献

增强皮肤病变分类:一种与人类基线比较的卷积神经网络方法。

Enhancing skin lesion classification: a CNN approach with human baseline comparison.

作者信息

Ajabani Deep, Shaikh Zaffar Ahmed, Yousef Amr, Ali Karar, Albahar Marwan A

机构信息

Source InfoTech Inc., Loganville, Georgia, United States.

Department of Computer Science and Information Technology, Benazir Bhutto Shaheed University Lyari, Karachi, Pakistan.

出版信息

PeerJ Comput Sci. 2025 Apr 15;11:e2795. doi: 10.7717/peerj-cs.2795. eCollection 2025.

Abstract

This study presents an augmented hybrid approach for improving the diagnosis of malignant skin lesions by combining convolutional neural network (CNN) predictions with selective human interventions based on prediction confidence. The algorithm retains high-confidence CNN predictions while replacing low-confidence outputs with expert human assessments to enhance diagnostic accuracy. A CNN model utilizing the EfficientNetB3 backbone is trained on datasets from the ISIC-2019 and ISIC-2020 SIIM-ISIC melanoma classification challenges and evaluated on a 150-image test set. The model's predictions are compared against assessments from 69 experienced medical professionals. Performance is assessed using receiver operating characteristic (ROC) curves and area under curve (AUC) metrics, alongside an analysis of human resource costs. The baseline CNN achieves an AUC of 0.822, slightly below the performance of human experts. However, the augmented hybrid approach improves the true positive rate to 0.782 and reduces the false positive rate to 0.182, delivering better diagnostic performance with minimal human involvement. This approach offers a scalable, resource-efficient solution to address variability in medical image analysis, effectively harnessing the complementary strengths of expert humans and CNNs.

摘要

本研究提出了一种增强混合方法,通过将卷积神经网络(CNN)预测与基于预测置信度的选择性人工干预相结合,来改善恶性皮肤病变的诊断。该算法保留高置信度的CNN预测,同时用专家人工评估替换低置信度输出,以提高诊断准确性。利用EfficientNetB3主干的CNN模型在ISIC - 2019和ISIC - 2020 SIIM - ISIC黑色素瘤分类挑战的数据集上进行训练,并在一个150张图像的测试集上进行评估。将该模型的预测与69位经验丰富的医学专业人员的评估进行比较。使用受试者工作特征(ROC)曲线和曲线下面积(AUC)指标评估性能,并对人力资源成本进行分析。基线CNN的AUC为0.822,略低于人类专家的表现。然而,增强混合方法将真阳性率提高到0.782,并将假阳性率降低到0.182,以最少的人工参与实现了更好的诊断性能。这种方法提供了一种可扩展、资源高效的解决方案,以解决医学图像分析中的变异性问题,有效地利用了专家人工和CNN的互补优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fd3b/12192895/262bb9de4b2a/peerj-cs-11-2795-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验