Suppr超能文献

用于等几何非协调基尔霍夫-洛夫壳面片的内部罚耦合策略。

An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches.

作者信息

Guarino Giuliano, Antolin Pablo, Milazzo Alberto, Buffa Annalisa

机构信息

Department of Engineering, Università degli Studi di Palermo, Palermo, 90128 Italy.

Institute of Mathematics, École Polytechnique Fédérale de Lausanne, Lausanne, 1015 Switzerland.

出版信息

Eng Comput. 2024;40(5):3031-3057. doi: 10.1007/s00366-024-01965-5. Epub 2024 Mar 27.

Abstract

This work focuses on the coupling of trimmed shell patches using Isogeometric Analysis, based on higher continuity splines that seamlessly meet the requirement of Kirchhoff-Love-based discretizations. Weak enforcement of coupling conditions is achieved through the symmetric interior penalty method, where the fluxes are computed using their correct variationally consistent expression that was only recently proposed and is unprecedentedly adopted herein in the context of coupling conditions. The constitutive relationship accounts for generically laminated materials, although the proposed tests are conducted under the assumption of uniform thickness and lamination sequence. Numerical experiments assess the method for an isotropic and a laminated plate, as well as an isotropic hyperbolic paraboloid shell from the new shell obstacle course. The boundary conditions and domain force are chosen to reproduce manufactured analytical solutions, which are taken as reference to compute rigorous convergence curves in the , , and norms, that closely approach optimal ones predicted by theory. Additionally, we conduct a final test on a complex structure comprising five intersecting laminated cylindrical shells, whose geometry is directly imported from a STEP file. The results exhibit excellent agreement with those obtained through commercial software, showcasing the method's potential for real-world industrial applications.

摘要

这项工作聚焦于基于等几何分析的裁剪壳面片耦合,该分析基于具有更高连续性的样条,无缝满足基于基尔霍夫-洛夫离散化的要求。耦合条件的弱强制通过对称内部罚函数法实现,其中通量使用其正确的变分一致表达式来计算,该表达式最近才被提出,在此耦合条件的背景下是首次采用。本构关系考虑了一般的层合材料,尽管所进行的测试是在均匀厚度和层合顺序的假设下进行的。数值实验评估了该方法用于各向同性和层合板以及新壳障碍课程中的各向同性双曲抛物面壳的情况。选择边界条件和域力以重现精确的解析解,将其作为参考来计算在(L^2)、(H^1)和(H^2)范数下的严格收敛曲线,这些曲线紧密接近理论预测的最优曲线。此外,我们对一个由五个相交的层合圆柱壳组成的复杂结构进行了最终测试,其几何形状直接从一个STEP文件导入。结果与通过商业软件获得的结果显示出极佳的一致性,展示了该方法在实际工业应用中的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7603/11480181/e515d027aea9/366_2024_1965_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验