Kamensky David, Hsu Ming-Chen, Schillinger Dominik, Evans John A, Aggarwal Ankush, Bazilevs Yuri, Sacks Michael S, Hughes Thomas J R
Center for Cardiovascular Simulation, Institute for Computational Engineering and Sciences, The University of Texas at Austin, 201 East 24th St, Stop C0200, Austin, TX 78712, USA.
Department of Mechanical Engineering, Iowa State University, 2025 Black Engineering, Ames, IA 50011, USA.
Comput Methods Appl Mech Eng. 2015 Feb 1;284:1005-1053. doi: 10.1016/j.cma.2014.10.040.
In this paper, we develop a geometrically flexible technique for computational fluid-structure interaction (FSI). The motivating application is the simulation of tri-leaflet bioprosthetic heart valve function over the complete cardiac cycle. Due to the complex motion of the heart valve leaflets, the fluid domain undergoes large deformations, including changes of topology. The proposed method directly analyzes a spline-based surface representation of the structure by immersing it into a non-boundary-fitted discretization of the surrounding fluid domain. This places our method within an emerging class of computational techniques that aim to capture on non-boundary-fitted analysis meshes. We introduce the term "immersogeometric analysis" to identify this paradigm. The framework starts with an augmented Lagrangian formulation for FSI that enforces kinematic constraints with a combination of Lagrange multipliers and penalty forces. For immersed volumetric objects, we formally eliminate the multiplier field by substituting a fluid-structure interface traction, arriving at Nitsche's method for enforcing Dirichlet boundary conditions on object surfaces. For immersed thin shell structures modeled geometrically as surfaces, the tractions from opposite sides cancel due to the continuity of the background fluid solution space, leaving a penalty method. Application to a bioprosthetic heart valve, where there is a large pressure jump across the leaflets, reveals shortcomings of the penalty approach. To counteract steep pressure gradients through the structure without the conditioning problems that accompany strong penalty forces, we resurrect the Lagrange multiplier field. Further, since the fluid discretization is not tailored to the structure geometry, there is a significant error in the approximation of pressure discontinuities across the shell. This error becomes especially troublesome in residual-based stabilized methods for incompressible flow, leading to problematic compressibility at practical levels of refinement. We modify existing stabilized methods to improve performance. To evaluate the accuracy of the proposed methods, we test them on benchmark problems and compare the results with those of established boundary-fitted techniques. Finally, we simulate the coupling of the bioprosthetic heart valve and the surrounding blood flow under physiological conditions, demonstrating the effectiveness of the proposed techniques in practical computations.
在本文中,我们开发了一种用于计算流体 - 结构相互作用(FSI)的几何灵活技术。其激励应用是在完整心动周期内模拟三叶生物人工心脏瓣膜的功能。由于心脏瓣膜小叶的复杂运动,流体域会经历大变形,包括拓扑变化。所提出的方法通过将基于样条的结构表面表示浸入周围流体域的非边界拟合离散化中来直接分析该结构。这使我们的方法属于旨在在非边界拟合分析网格上进行捕捉的一类新兴计算技术。我们引入“浸入几何分析”一词来识别这一范式。该框架从用于FSI的增广拉格朗日公式开始,通过拉格朗日乘子和惩罚力的组合来强制运动学约束。对于浸入的体积物体,我们通过代入流体 - 结构界面牵引力来正式消除乘子场,从而得到用于在物体表面强制狄利克雷边界条件的尼茨方法。对于几何上建模为表面的浸入薄壳结构,由于背景流体解空间的连续性,相对两侧的牵引力相互抵消,从而得到一种惩罚方法。将其应用于生物人工心脏瓣膜时,小叶两侧存在较大压力跃变,这揭示了惩罚方法的缺点。为了在不伴随强惩罚力所带来的条件问题情况下抵消通过结构的陡峭压力梯度,我们重新引入拉格朗日乘子场。此外,由于流体离散化并非针对结构几何进行定制,壳上压力不连续的近似存在显著误差。在基于残差的不可压缩流稳定方法中,这个误差变得特别麻烦,导致在实际细化水平下出现有问题的可压缩性。我们修改现有的稳定方法以提高性能。为了评估所提出方法的准确性,我们在基准问题上对其进行测试,并将结果与已确立的边界拟合技术的结果进行比较。最后,我们在生理条件下模拟生物人工心脏瓣膜与周围血流的耦合,证明了所提出技术在实际计算中的有效性。