Yu Wenjun, Zhu Haodong, Upreti Neil, Lu Brandon, Xu Xianchen, Lee Luke P, Huang Tony Jun
Department of Mechanical Engineering and Material Science, Duke University, Durham, NC, 27708, USA.
Department of Biomedical Engineering, Duke University, Durham, NC, 27708, USA.
Adv Sci (Weinh). 2024 Dec;11(46):e2403742. doi: 10.1002/advs.202403742. Epub 2024 Oct 18.
Acoustic manipulation has emerged as a valuable tool for precision controls and dynamic programming of cells and particles. However, conventional acoustic manipulation approaches lack the finesse necessary to form intricate, configurable, continuous, and 3D patterning of particles. Here, this study reports acoustography by Beam Engineering and Acoustic Control Node (BEACON), which delivers intricate, configurable patterns by guiding particles along custom paths with independent phase modulation. Leveraging analytical methods of orbital angular momentum beam via iterative Wirtinger hologram algorithm, this study accomplish acoustography by facilitating orbital angular momentum traps, enabling continuous 2D and 3D acoustic manipulation of microparticles in any desired geometry, with phase modulation independent of intensity. Utilizing on-chip acoustography, the BEACON platform markedly increases the space-bandwidth product to 31 000 while attaining an enhanced resolution with a pixel size of ≈25 µm, surpassing the typical resolution of over 200 µm in previous holographic particle manipulation methods. The capabilities of BEACON are demonstrated in creating intricate triple helical tracing structures using microdroplets (20 µm in diameter) and those carrying DNA to validate the effectiveness of the acoustography and phase control methods. This study offers new particle manipulation opportunities, paving the way for next-generation biomedical systems and the future of contact-free precision manufacturing.
声学操控已成为一种用于细胞和粒子精确控制及动态编程的重要工具。然而,传统的声学操控方法缺乏形成复杂、可配置、连续且三维粒子图案所需的精细度。在此,本研究报告了由光束工程与声学控制节点(BEACON)实现的声全息成像技术,该技术通过独立相位调制引导粒子沿自定义路径运动,从而生成复杂、可配置的图案。利用通过迭代维特林格全息算法的轨道角动量光束分析方法,本研究通过实现轨道角动量陷阱来完成声全息成像,能够以与强度无关的相位调制对任何所需几何形状中的微粒进行连续二维和三维声学操控。利用片上声全息成像技术,BEACON平台显著提高了空间带宽积至31000,同时实现了约25微米像素尺寸的更高分辨率,超过了以往全息粒子操控方法中典型的200多微米分辨率。BEACON的能力在使用微滴(直径20微米)和携带DNA的微滴创建复杂的三螺旋追踪结构中得到了证明,以验证声全息成像和相位控制方法的有效性。本研究提供了新的粒子操控机会,为下一代生物医学系统和无接触精密制造的未来铺平了道路。