Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.
C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.
Nat Mater. 2022 May;21(5):540-546. doi: 10.1038/s41563-022-01210-8. Epub 2022 Mar 24.
Precise and selective manipulation of colloids and biological cells has long been motivated by applications in materials science, physics and the life sciences. Here we introduce our harmonic acoustics for a non-contact, dynamic, selective (HANDS) particle manipulation platform, which enables the reversible assembly of colloidal crystals or cells via the modulation of acoustic trapping positions with subwavelength resolution. We compose Fourier-synthesized harmonic waves to create soft acoustic lattices and colloidal crystals without using surface treatment or modifying their material properties. We have achieved active control of the lattice constant to dynamically modulate the interparticle distance in a high-throughput (>100 pairs), precise, selective and reversible manner. Furthermore, we apply this HANDS platform to quantify the intercellular adhesion forces among various cancer cell lines. Our biocompatible HANDS platform provides a highly versatile particle manipulation method that can handle soft matter and measure the interaction forces between living cells with high sensitivity.
长期以来,人们一直致力于通过应用于材料科学、物理学和生命科学来实现对胶体和生物细胞的精确和选择性操控。在这里,我们介绍了我们的用于非接触式、动态、选择性(HANDS)粒子操控平台的谐波声学,该平台通过亚波长分辨率的声阱位置调制来实现胶体晶体或细胞的可逆组装。我们通过组合傅里叶合成的谐波来创建软声晶格和胶体晶体,而无需使用表面处理或改变其材料特性。我们已经实现了晶格常数的主动控制,以高通量(>100 对)、精确、选择性和可逆的方式动态调节粒子间的距离。此外,我们将这个 HANDS 平台应用于量化各种癌细胞系之间的细胞间黏附力。我们的生物相容的 HANDS 平台提供了一种高度通用的粒子操控方法,可以处理软物质并以高灵敏度测量活细胞之间的相互作用力。