Suppr超能文献

用于动态和选择性粒子操控的谐波声学。

Harmonic acoustics for dynamic and selective particle manipulation.

机构信息

Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA.

C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV, USA.

出版信息

Nat Mater. 2022 May;21(5):540-546. doi: 10.1038/s41563-022-01210-8. Epub 2022 Mar 24.

Abstract

Precise and selective manipulation of colloids and biological cells has long been motivated by applications in materials science, physics and the life sciences. Here we introduce our harmonic acoustics for a non-contact, dynamic, selective (HANDS) particle manipulation platform, which enables the reversible assembly of colloidal crystals or cells via the modulation of acoustic trapping positions with subwavelength resolution. We compose Fourier-synthesized harmonic waves to create soft acoustic lattices and colloidal crystals without using surface treatment or modifying their material properties. We have achieved active control of the lattice constant to dynamically modulate the interparticle distance in a high-throughput (>100 pairs), precise, selective and reversible manner. Furthermore, we apply this HANDS platform to quantify the intercellular adhesion forces among various cancer cell lines. Our biocompatible HANDS platform provides a highly versatile particle manipulation method that can handle soft matter and measure the interaction forces between living cells with high sensitivity.

摘要

长期以来,人们一直致力于通过应用于材料科学、物理学和生命科学来实现对胶体和生物细胞的精确和选择性操控。在这里,我们介绍了我们的用于非接触式、动态、选择性(HANDS)粒子操控平台的谐波声学,该平台通过亚波长分辨率的声阱位置调制来实现胶体晶体或细胞的可逆组装。我们通过组合傅里叶合成的谐波来创建软声晶格和胶体晶体,而无需使用表面处理或改变其材料特性。我们已经实现了晶格常数的主动控制,以高通量(>100 对)、精确、选择性和可逆的方式动态调节粒子间的距离。此外,我们将这个 HANDS 平台应用于量化各种癌细胞系之间的细胞间黏附力。我们的生物相容的 HANDS 平台提供了一种高度通用的粒子操控方法,可以处理软物质并以高灵敏度测量活细胞之间的相互作用力。

相似文献

1
Harmonic acoustics for dynamic and selective particle manipulation.用于动态和选择性粒子操控的谐波声学。
Nat Mater. 2022 May;21(5):540-546. doi: 10.1038/s41563-022-01210-8. Epub 2022 Mar 24.
3
Acoustic tweezers for high-throughput single-cell analysis.声镊高通量单细胞分析。
Nat Protoc. 2023 Aug;18(8):2441-2458. doi: 10.1038/s41596-023-00844-5. Epub 2023 Jul 19.
7
Molecular Recognition in the Colloidal World.胶体世界中的分子识别。
Acc Chem Res. 2017 Nov 21;50(11):2756-2766. doi: 10.1021/acs.accounts.7b00370. Epub 2017 Oct 6.
8
Acoustofluidic platforms for particle manipulation.声流控平台在粒子操控方面的应用。
Electrophoresis. 2022 Apr;43(7-8):804-818. doi: 10.1002/elps.202100291. Epub 2021 Nov 12.
10
Next-Generation Colloidal Materials for Ultrasound Imaging Applications.用于超声成像应用的下一代胶体材料。
Ultrasound Med Biol. 2022 Aug;48(8):1373-1396. doi: 10.1016/j.ultrasmedbio.2022.04.001. Epub 2022 May 28.

引用本文的文献

2
Nanoscale acoustic oscillator for mechanoimmunology: NAOMI.用于机械免疫学的纳米级声学振荡器:NAOMI
Sci Adv. 2025 Aug 15;11(33):eadx3851. doi: 10.1126/sciadv.adx3851. Epub 2025 Aug 13.
7
Technology Roadmap of Micro/Nanorobots.微纳机器人技术路线图
ACS Nano. 2025 Jul 15;19(27):24174-24334. doi: 10.1021/acsnano.5c03911. Epub 2025 Jun 27.
9
CO-driven diffusiophoresis in an evaporating sessile droplet.蒸发固着液滴中的一氧化碳驱动扩散泳
Colloids Surf A Physicochem Eng Asp. 2025 Jan 20;705(Pt 1). doi: 10.1016/j.colsurfa.2024.135660. Epub 2024 Oct 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验