Micro, Nano and Molecular Systems Group, Max Planck Institute for Medical Research, Jahnstr. 29, 69120 Heidelberg, Germany.
Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Im Neuenheimer Feld 225, 69120 Heidelberg, Germany.
Sci Adv. 2023 Feb 10;9(6):eadf6182. doi: 10.1126/sciadv.adf6182. Epub 2023 Feb 8.
Acoustic waves exert forces when they interact with matter. Shaping ultrasound fields precisely in 3D thus allows control over the force landscape and should permit particulates to fall into place to potentially form whole 3D objects in "one shot." This is promising for rapid prototyping, most notably biofabrication, since conventional methods are typically slow and apply mechanical or chemical stress on biological cells. Here, we realize the generation of compact holographic ultrasound fields and demonstrate the one-step assembly of matter using acoustic forces. We combine multiple holographic fields that drive the contactless assembly of solid microparticles, hydrogel beads, and biological cells inside standard labware. The structures can be fixed via gelation of the surrounding medium. In contrast to previous work, this approach handles matter with positive acoustic contrast and does not require opposing waves, supporting surfaces or scaffolds. We envision promising applications of 3D holographic ultrasound fields in tissue engineering and additive manufacturing.
声波在与物质相互作用时会产生力。因此,精确地在 3D 中塑造超声场可以控制力的分布,有望使颗粒落入适当的位置,从而有可能一次性形成完整的 3D 物体。这对于快速原型制作(尤其是生物制造)非常有前景,因为传统方法通常较慢,并且对生物细胞施加机械或化学应力。在这里,我们实现了紧凑全息超声场的产生,并展示了使用声力进行的一步物质组装。我们结合了多个全息场,驱动标准实验室器皿内的固体微颗粒、水凝胶珠和生物细胞的无接触组装。可以通过周围介质的胶凝来固定结构。与以前的工作相比,这种方法使用具有正声对比度的物质,不需要相反的波、支撑表面或支架。我们设想 3D 全息超声场在组织工程和增材制造中有很好的应用前景。