Suppr超能文献

与卷积神经网络集成的超参数推荐

Hyperparameter Recommendation Integrated With Convolutional Neural Network.

作者信息

Deng Liping, Chen Wen-Sheng, Pan Binbin, Xiao MingQing

出版信息

IEEE Trans Neural Netw Learn Syst. 2025 Jun;36(6):11121-11134. doi: 10.1109/TNNLS.2024.3476439.

Abstract

Hyperparameter recommendation via meta-learning has shown great promise in various studies. The main challenge for meta-learning is how to develop an effective meta-learner (learning algorithm) that can capture the intrinsic relationship between dataset characteristics and the empirical performance of hyperparameters. Existing meta-learners are mostly based on traditional machine-learning models that only learn data representations with a single layer, which are incapable of learning complex features from the data and often cannot capture those properties deeply embedded in data. To address this issue, in this article, we propose hyperparameter recommendation approaches by integrating the learning model with convolutional neural networks (CNNs). Specifically, we first formulate the recommendation task as a regression problem, where dataset characteristics are treated as predictors and the historical performance of hyperparameters as responses. We establish a CNN-based learning model with feature selection capability to serve as the regressor. We then develop a convolutional denoising autoencoder (ConvDAE) that can leverage the spatial structure of the entire hyperparameter performance space and evaluate the performance of hyperparameters via denoising when the performance of partial hyperparameters is available under the multidimensional framework. To make our approach being flexible in applications, we establish a comprehensive two-branch CNN model that can utilize both dataset characteristics and partial evaluations to make effective recommendations. We conduct extensive experiments on 400 real classification problems and the well-known SVM. Our proposed approaches outperform existing meta-learning baselines as well as various search algorithms, demonstrating the high effectiveness in hyperparameter recommendations via deep learning.

摘要

通过元学习进行超参数推荐在各种研究中已显示出巨大的潜力。元学习的主要挑战在于如何开发一种有效的元学习器(学习算法),它能够捕捉数据集特征与超参数的经验性能之间的内在关系。现有的元学习器大多基于传统机器学习模型,这些模型仅通过单层学习数据表示,无法从数据中学习复杂特征,并且通常无法深入捕捉数据中嵌入的那些属性。为了解决这个问题,在本文中,我们提出了通过将学习模型与卷积神经网络(CNN)相结合的超参数推荐方法。具体来说,我们首先将推荐任务表述为一个回归问题,其中将数据集特征视为预测变量,将超参数的历史性能视为响应变量。我们建立了一个具有特征选择能力的基于CNN的学习模型作为回归器。然后,我们开发了一种卷积去噪自动编码器(ConvDAE),它可以利用整个超参数性能空间的空间结构,并在多维框架下当部分超参数的性能可用时通过去噪来评估超参数的性能。为了使我们的方法在应用中具有灵活性,我们建立了一个综合的双分支CNN模型,该模型可以利用数据集特征和部分评估来做出有效的推荐。我们在400个真实分类问题和著名的支持向量机(SVM)上进行了广泛的实验。我们提出的方法优于现有的元学习基线以及各种搜索算法,证明了通过深度学习进行超参数推荐的高效性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验