Yang Yang, Zhuang Jiaxin, Sun Guoying, Wang Ruixuan, Su Jingyong
IEEE Trans Med Imaging. 2025 Jul;44(7):2973-2988. doi: 10.1109/TMI.2025.3556482.
Semi-supervised learning methods, compared to fully supervised learning, offer significant potential to alleviate the burden of manual annotations on clinicians. By leveraging unlabeled data, these methods can aid in the development of medical image segmentation systems for improving efficiency. Boundary segmentation is crucial in medical image analysis. However, accurate segmentation of boundary regions is under-explored in existing methods since boundary pixels constitute only a small fraction of the overall image, resulting in suboptimal segmentation performance for boundary regions. In this paper, we introduce boundary-guided contrastive learning for semi-supervised medical image segmentation (BoCLIS). Specifically, we first propose conservative-to-radical teacher networks with an uncertainty-weighted aggregation strategy to generate higher quality pseudo-labels, enabling more efficient utilization of unlabeled data. To further improve the performance of segmentation in boundary regions, we propose a boundary-guided patch sampling strategy to guide the framework in learning discriminative representations for these regions. Lastly, the patch-based contrastive learning is proposed to simultaneously compute the (dis)similarities of the discriminative representations across intra- and inter-images. Extensive experiments on three public datasets show that our method consistently outperforms existing methods, especially in the boundary region, with DSC improvements of 20.47%, 16.75%, and 17.18%, respectively. A comprehensive analysis is further performed to demonstrate the effectiveness of our approach. Our code is released publicly at https://github.com/youngyzzZ/BoCLIS.
与完全监督学习相比,半监督学习方法具有显著潜力,可减轻临床医生手动标注的负担。通过利用未标注数据,这些方法有助于开发医学图像分割系统以提高效率。边界分割在医学图像分析中至关重要。然而,现有方法对边界区域的精确分割探索不足,因为边界像素仅占整个图像的一小部分,导致边界区域的分割性能次优。在本文中,我们引入了用于半监督医学图像分割的边界引导对比学习(BoCLIS)。具体而言,我们首先提出具有不确定性加权聚合策略的保守到激进教师网络,以生成更高质量的伪标签,从而更有效地利用未标注数据。为了进一步提高边界区域的分割性能,我们提出了一种边界引导的补丁采样策略,以指导框架学习这些区域的判别性表示。最后,提出了基于补丁的对比学习,以同时计算跨图像内和图像间判别性表示的(不)相似性。在三个公共数据集上进行的大量实验表明,我们的方法始终优于现有方法,特别是在边界区域,DSC分别提高了20.47%、16.75%和17.18%。进一步进行了全面分析以证明我们方法的有效性。我们的代码在https://github.com/youngyzzZ/BoCLIS上公开发布。